Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltsgn1 Structured version   Unicode version

Theorem sltsgn1 29661
Description: If  A <s B, then the sign of  A at the first place they differ is either undefined or  1o. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
sltsgn1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o ) ) )
Distinct variable groups:    A, k    B, k

Proof of Theorem sltsgn1
StepHypRef Expression
1 sltval2 29656 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } ) ) )
2 fvex 5858 . . . 4  |-  ( A `
 |^| { k  e.  On  |  ( A `
 k )  =/=  ( B `  k
) } )  e. 
_V
3 fvex 5858 . . . 4  |-  ( B `
 |^| { k  e.  On  |  ( A `
 k )  =/=  ( B `  k
) } )  e. 
_V
42, 3brtp 29419 . . 3  |-  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  <->  ( ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o  /\  ( B `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/) )  \/  (
( A `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  1o  /\  ( B `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  2o )  \/  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  /\  ( B `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  2o ) ) )
5 olc 382 . . . . 5  |-  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o  ->  (
( A `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o ) )
65adantr 463 . . . 4  |-  ( ( ( A `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  1o  /\  ( B `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/) )  ->  (
( A `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o ) )
75adantr 463 . . . 4  |-  ( ( ( A `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  1o  /\  ( B `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  2o )  -> 
( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  1o ) )
8 orc 383 . . . . 5  |-  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  ->  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o ) )
98adantr 463 . . . 4  |-  ( ( ( A `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  (/)  /\  ( B `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  2o )  -> 
( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  1o ) )
106, 7, 93jaoi 1289 . . 3  |-  ( ( ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o 
/\  ( B `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/) )  \/  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o  /\  ( B `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  2o )  \/  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  /\  ( B `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  =  2o ) )  ->  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o ) )
114, 10sylbi 195 . 2  |-  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { k  e.  On  | 
( A `  k
)  =/=  ( B `
 k ) } )  ->  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o ) )
121, 11syl6bi 228 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  ( ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  (/)  \/  ( A `  |^| { k  e.  On  |  ( A `  k )  =/=  ( B `  k ) } )  =  1o ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367    \/ w3o 970    = wceq 1398    e. wcel 1823    =/= wne 2649   {crab 2808   (/)c0 3783   {ctp 4020   <.cop 4022   |^|cint 4271   class class class wbr 4439   Oncon0 4867   ` cfv 5570   1oc1o 7115   2oc2o 7116   Nocsur 29640   <scslt 29641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-br 4440  df-opab 4498  df-tr 4533  df-eprel 4780  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-suc 4873  df-iota 5534  df-fv 5578  df-1o 7122  df-2o 7123  df-slt 29644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator