Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltintdifex Structured version   Unicode version

Theorem sltintdifex 27949
Description: If  A <s B, then the intersection of all the ordinals that have differing signs in  A and  B exists. (Contributed by Scott Fenton, 22-Feb-2012.)
Assertion
Ref Expression
sltintdifex  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V ) )
Distinct variable groups:    A, a    B, a

Proof of Theorem sltintdifex
StepHypRef Expression
1 sltval2 27942 . 2  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
2 fvex 5810 . . . 4  |-  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
3 fvex 5810 . . . 4  |-  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
42, 3brtp 27704 . . 3  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  <->  ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) ) )
5 fvprc 5794 . . . . . . 7  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
6 1n0 7046 . . . . . . . . 9  |-  1o  =/=  (/)
7 df-ne 2650 . . . . . . . . 9  |-  ( 1o  =/=  (/)  <->  -.  1o  =  (/) )
86, 7mpbi 208 . . . . . . . 8  |-  -.  1o  =  (/)
9 eqeq1 2458 . . . . . . . . 9  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  <->  (/)  =  1o ) )
10 eqcom 2463 . . . . . . . . 9  |-  ( (/)  =  1o  <->  1o  =  (/) )
119, 10syl6bb 261 . . . . . . . 8  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  <->  1o  =  (/) ) )
128, 11mtbiri 303 . . . . . . 7  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  -.  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o )
135, 12syl 16 . . . . . 6  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  -.  ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o )
1413con4i 130 . . . . 5  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1514adantr 465 . . . 4  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
1614adantr 465 . . . 4  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
17 fvprc 5794 . . . . . . 7  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )
18 2on0 7040 . . . . . . . . 9  |-  2o  =/=  (/)
19 df-ne 2650 . . . . . . . . 9  |-  ( 2o  =/=  (/)  <->  -.  2o  =  (/) )
2018, 19mpbi 208 . . . . . . . 8  |-  -.  2o  =  (/)
21 eqeq1 2458 . . . . . . . . 9  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  <->  (/)  =  2o ) )
22 eqcom 2463 . . . . . . . . 9  |-  ( (/)  =  2o  <->  2o  =  (/) )
2321, 22syl6bb 261 . . . . . . . 8  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  <->  2o  =  (/) ) )
2420, 23mtbiri 303 . . . . . . 7  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  ->  -.  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )
2517, 24syl 16 . . . . . 6  |-  ( -. 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V  ->  -.  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o )
2625con4i 130 . . . . 5  |-  ( ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
2726adantl 466 . . . 4  |-  ( ( ( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
2815, 16, 273jaoi 1282 . . 3  |-  ( ( ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  2o ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
294, 28sylbi 195 . 2  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V )
301, 29syl6bi 228 1  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  _V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    \/ w3o 964    = wceq 1370    e. wcel 1758    =/= wne 2648   {crab 2803   _Vcvv 3078   (/)c0 3746   {ctp 3990   <.cop 3992   |^|cint 4237   class class class wbr 4401   Oncon0 4828   ` cfv 5527   1oc1o 7024   2oc2o 7025   Nocsur 27926   <scslt 27927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-br 4402  df-opab 4460  df-tr 4495  df-eprel 4741  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-suc 4834  df-iota 5490  df-fv 5535  df-1o 7031  df-2o 7032  df-slt 27930
This theorem is referenced by:  sltres  27950
  Copyright terms: Public domain W3C validator