Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slmdmcl Structured version   Unicode version

Theorem slmdmcl 28527
Description: Closure of ring multiplication for a semimodule. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
slmdmcl.f  |-  F  =  (Scalar `  W )
slmdmcl.k  |-  K  =  ( Base `  F
)
slmdmcl.t  |-  .x.  =  ( .r `  F )
Assertion
Ref Expression
slmdmcl  |-  ( ( W  e. SLMod  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .x.  Y )  e.  K )

Proof of Theorem slmdmcl
StepHypRef Expression
1 slmdmcl.f . . 3  |-  F  =  (Scalar `  W )
21slmdsrg 28524 . 2  |-  ( W  e. SLMod  ->  F  e. SRing )
3 slmdmcl.k . . 3  |-  K  =  ( Base `  F
)
4 slmdmcl.t . . 3  |-  .x.  =  ( .r `  F )
53, 4srgcl 17739 . 2  |-  ( ( F  e. SRing  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .x.  Y )  e.  K )
62, 5syl3an1 1298 1  |-  ( ( W  e. SLMod  /\  X  e.  K  /\  Y  e.  K )  ->  ( X  .x.  Y )  e.  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 983    = wceq 1438    e. wcel 1869   ` cfv 5599  (class class class)co 6303   Basecbs 15114   .rcmulr 15184  Scalarcsca 15186  SRingcsrg 17732  SLModcslmd 28517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-2 10670  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-plusg 15196  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-mgp 17717  df-srg 17733  df-slmd 28518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator