Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgfval Structured version   Unicode version

Theorem sitgfval 27951
Description: Value of the Bochner integral for a simple function  F. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b  |-  B  =  ( Base `  W
)
sitgval.j  |-  J  =  ( TopOpen `  W )
sitgval.s  |-  S  =  (sigaGen `  J )
sitgval.0  |-  .0.  =  ( 0g `  W )
sitgval.x  |-  .x.  =  ( .s `  W )
sitgval.h  |-  H  =  (RRHom `  (Scalar `  W
) )
sitgval.1  |-  ( ph  ->  W  e.  V )
sitgval.2  |-  ( ph  ->  M  e.  U. ran measures )
sibfmbl.1  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
Assertion
Ref Expression
sitgfval  |-  ( ph  ->  ( ( Wsitg M
) `  F )  =  ( W  gsumg  ( x  e.  ( ran  F  \  {  .0.  } ) 
|->  ( ( H `  ( M `  ( `' F " { x } ) ) ) 
.x.  x ) ) ) )
Distinct variable groups:    x, F    x, M    x, W    x,  .0.   
ph, x
Allowed substitution hints:    B( x)    S( x)    .x. ( x)    H( x)    J( x)    V( x)

Proof of Theorem sitgfval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3  |-  B  =  ( Base `  W
)
2 sitgval.j . . 3  |-  J  =  ( TopOpen `  W )
3 sitgval.s . . 3  |-  S  =  (sigaGen `  J )
4 sitgval.0 . . 3  |-  .0.  =  ( 0g `  W )
5 sitgval.x . . 3  |-  .x.  =  ( .s `  W )
6 sitgval.h . . 3  |-  H  =  (RRHom `  (Scalar `  W
) )
7 sitgval.1 . . 3  |-  ( ph  ->  W  e.  V )
8 sitgval.2 . . 3  |-  ( ph  ->  M  e.  U. ran measures )
91, 2, 3, 4, 5, 6, 7, 8sitgval 27942 . 2  |-  ( ph  ->  ( Wsitg M )  =  ( f  e. 
{ g  e.  ( dom  MMblFnM S )  |  ( ran  g  e. 
Fin  /\  A. x  e.  ( ran  g  \  {  .0.  } ) ( M `  ( `' g " { x } ) )  e.  ( 0 [,) +oo ) ) }  |->  ( W  gsumg  ( x  e.  ( ran  f  \  {  .0.  } )  |->  ( ( H `  ( M `
 ( `' f
" { x }
) ) )  .x.  x ) ) ) ) )
10 simpr 461 . . . . . 6  |-  ( (
ph  /\  f  =  F )  ->  f  =  F )
1110rneqd 5230 . . . . 5  |-  ( (
ph  /\  f  =  F )  ->  ran  f  =  ran  F )
1211difeq1d 3621 . . . 4  |-  ( (
ph  /\  f  =  F )  ->  ( ran  f  \  {  .0.  } )  =  ( ran 
F  \  {  .0.  } ) )
1310cnveqd 5178 . . . . . . . 8  |-  ( (
ph  /\  f  =  F )  ->  `' f  =  `' F
)
1413imaeq1d 5336 . . . . . . 7  |-  ( (
ph  /\  f  =  F )  ->  ( `' f " {
x } )  =  ( `' F " { x } ) )
1514fveq2d 5870 . . . . . 6  |-  ( (
ph  /\  f  =  F )  ->  ( M `  ( `' f " { x }
) )  =  ( M `  ( `' F " { x } ) ) )
1615fveq2d 5870 . . . . 5  |-  ( (
ph  /\  f  =  F )  ->  ( H `  ( M `  ( `' f " { x } ) ) )  =  ( H `  ( M `
 ( `' F " { x } ) ) ) )
1716oveq1d 6299 . . . 4  |-  ( (
ph  /\  f  =  F )  ->  (
( H `  ( M `  ( `' f " { x }
) ) )  .x.  x )  =  ( ( H `  ( M `  ( `' F " { x }
) ) )  .x.  x ) )
1812, 17mpteq12dv 4525 . . 3  |-  ( (
ph  /\  f  =  F )  ->  (
x  e.  ( ran  f  \  {  .0.  } )  |->  ( ( H `
 ( M `  ( `' f " {
x } ) ) )  .x.  x ) )  =  ( x  e.  ( ran  F  \  {  .0.  } ) 
|->  ( ( H `  ( M `  ( `' F " { x } ) ) ) 
.x.  x ) ) )
1918oveq2d 6300 . 2  |-  ( (
ph  /\  f  =  F )  ->  ( W  gsumg  ( x  e.  ( ran  f  \  {  .0.  } )  |->  ( ( H `  ( M `
 ( `' f
" { x }
) ) )  .x.  x ) ) )  =  ( W  gsumg  ( x  e.  ( ran  F  \  {  .0.  } ) 
|->  ( ( H `  ( M `  ( `' F " { x } ) ) ) 
.x.  x ) ) ) )
20 sibfmbl.1 . . . . 5  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
211, 2, 3, 4, 5, 6, 7, 8, 20sibfmbl 27945 . . . 4  |-  ( ph  ->  F  e.  ( dom 
MMblFnM S ) )
221, 2, 3, 4, 5, 6, 7, 8, 20sibfrn 27947 . . . 4  |-  ( ph  ->  ran  F  e.  Fin )
231, 2, 3, 4, 5, 6, 7, 8, 20sibfima 27948 . . . . 5  |-  ( (
ph  /\  x  e.  ( ran  F  \  {  .0.  } ) )  -> 
( M `  ( `' F " { x } ) )  e.  ( 0 [,) +oo ) )
2423ralrimiva 2878 . . . 4  |-  ( ph  ->  A. x  e.  ( ran  F  \  {  .0.  } ) ( M `
 ( `' F " { x } ) )  e.  ( 0 [,) +oo ) )
2521, 22, 24jca32 535 . . 3  |-  ( ph  ->  ( F  e.  ( dom  MMblFnM S )  /\  ( ran  F  e.  Fin  /\ 
A. x  e.  ( ran  F  \  {  .0.  } ) ( M `
 ( `' F " { x } ) )  e.  ( 0 [,) +oo ) ) ) )
26 rneq 5228 . . . . . 6  |-  ( g  =  F  ->  ran  g  =  ran  F )
2726eleq1d 2536 . . . . 5  |-  ( g  =  F  ->  ( ran  g  e.  Fin  <->  ran  F  e.  Fin ) )
2826difeq1d 3621 . . . . . 6  |-  ( g  =  F  ->  ( ran  g  \  {  .0.  } )  =  ( ran 
F  \  {  .0.  } ) )
29 cnveq 5176 . . . . . . . . 9  |-  ( g  =  F  ->  `' g  =  `' F
)
3029imaeq1d 5336 . . . . . . . 8  |-  ( g  =  F  ->  ( `' g " {
x } )  =  ( `' F " { x } ) )
3130fveq2d 5870 . . . . . . 7  |-  ( g  =  F  ->  ( M `  ( `' g " { x }
) )  =  ( M `  ( `' F " { x } ) ) )
3231eleq1d 2536 . . . . . 6  |-  ( g  =  F  ->  (
( M `  ( `' g " {
x } ) )  e.  ( 0 [,) +oo )  <->  ( M `  ( `' F " { x } ) )  e.  ( 0 [,) +oo ) ) )
3328, 32raleqbidv 3072 . . . . 5  |-  ( g  =  F  ->  ( A. x  e.  ( ran  g  \  {  .0.  } ) ( M `  ( `' g " {
x } ) )  e.  ( 0 [,) +oo )  <->  A. x  e.  ( ran  F  \  {  .0.  } ) ( M `
 ( `' F " { x } ) )  e.  ( 0 [,) +oo ) ) )
3427, 33anbi12d 710 . . . 4  |-  ( g  =  F  ->  (
( ran  g  e.  Fin  /\  A. x  e.  ( ran  g  \  {  .0.  } ) ( M `  ( `' g " { x } ) )  e.  ( 0 [,) +oo ) )  <->  ( ran  F  e.  Fin  /\  A. x  e.  ( ran  F 
\  {  .0.  }
) ( M `  ( `' F " { x } ) )  e.  ( 0 [,) +oo ) ) ) )
3534elrab 3261 . . 3  |-  ( F  e.  { g  e.  ( dom  MMblFnM S
)  |  ( ran  g  e.  Fin  /\  A. x  e.  ( ran  g  \  {  .0.  } ) ( M `  ( `' g " {
x } ) )  e.  ( 0 [,) +oo ) ) }  <->  ( F  e.  ( dom  MMblFnM S
)  /\  ( ran  F  e.  Fin  /\  A. x  e.  ( ran  F 
\  {  .0.  }
) ( M `  ( `' F " { x } ) )  e.  ( 0 [,) +oo ) ) ) )
3625, 35sylibr 212 . 2  |-  ( ph  ->  F  e.  { g  e.  ( dom  MMblFnM S )  |  ( ran  g  e.  Fin  /\  A. x  e.  ( ran  g  \  {  .0.  } ) ( M `  ( `' g " {
x } ) )  e.  ( 0 [,) +oo ) ) } )
37 ovex 6309 . . 3  |-  ( W 
gsumg  ( x  e.  ( ran  F  \  {  .0.  } )  |->  ( ( H `
 ( M `  ( `' F " { x } ) ) ) 
.x.  x ) ) )  e.  _V
3837a1i 11 . 2  |-  ( ph  ->  ( W  gsumg  ( x  e.  ( ran  F  \  {  .0.  } )  |->  ( ( H `  ( M `
 ( `' F " { x } ) ) )  .x.  x
) ) )  e. 
_V )
399, 19, 36, 38fvmptd 5955 1  |-  ( ph  ->  ( ( Wsitg M
) `  F )  =  ( W  gsumg  ( x  e.  ( ran  F  \  {  .0.  } ) 
|->  ( ( H `  ( M `  ( `' F " { x } ) ) ) 
.x.  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   _Vcvv 3113    \ cdif 3473   {csn 4027   U.cuni 4245    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002   ` cfv 5588  (class class class)co 6284   Fincfn 7516   0cc0 9492   +oocpnf 9625   [,)cico 11531   Basecbs 14490  Scalarcsca 14558   .scvsca 14559   TopOpenctopn 14677   0gc0g 14695    gsumg cgsu 14696  RRHomcrrh 27638  sigaGencsigagen 27806  measurescmeas 27834  MblFnMcmbfm 27889  sitgcsitg 27939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-sitg 27940
This theorem is referenced by:  sitgclg  27952  sitg0  27956
  Copyright terms: Public domain W3C validator