Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgfval Structured version   Visualization version   Unicode version

Theorem sitgfval 29247
 Description: Value of the Bochner integral for a simple function . (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b
sitgval.j
sitgval.s sigaGen
sitgval.0
sitgval.x
sitgval.h RRHomScalar
sitgval.1
sitgval.2 measures
sibfmbl.1 sitg
Assertion
Ref Expression
sitgfval sitg g
Distinct variable groups:   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   ()   ()

Proof of Theorem sitgfval
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.b . . 3
2 sitgval.j . . 3
3 sitgval.s . . 3 sigaGen
4 sitgval.0 . . 3
5 sitgval.x . . 3
6 sitgval.h . . 3 RRHomScalar
7 sitgval.1 . . 3
8 sitgval.2 . . 3 measures
91, 2, 3, 4, 5, 6, 7, 8sitgval 29238 . 2 sitg MblFnM g
10 simpr 468 . . . . . 6
1110rneqd 5068 . . . . 5
1211difeq1d 3539 . . . 4
1310cnveqd 5015 . . . . . . . 8
1413imaeq1d 5173 . . . . . . 7
1514fveq2d 5883 . . . . . 6
1615fveq2d 5883 . . . . 5
1716oveq1d 6323 . . . 4
1812, 17mpteq12dv 4474 . . 3
1918oveq2d 6324 . 2 g g
20 sibfmbl.1 . . . . 5 sitg
211, 2, 3, 4, 5, 6, 7, 8, 20sibfmbl 29241 . . . 4 MblFnM
221, 2, 3, 4, 5, 6, 7, 8, 20sibfrn 29243 . . . 4
231, 2, 3, 4, 5, 6, 7, 8, 20sibfima 29244 . . . . 5
2423ralrimiva 2809 . . . 4
2521, 22, 24jca32 544 . . 3 MblFnM
26 rneq 5066 . . . . . 6
2726eleq1d 2533 . . . . 5
2826difeq1d 3539 . . . . . 6
29 cnveq 5013 . . . . . . . . 9
3029imaeq1d 5173 . . . . . . . 8
3130fveq2d 5883 . . . . . . 7
3231eleq1d 2533 . . . . . 6
3328, 32raleqbidv 2987 . . . . 5
3427, 33anbi12d 725 . . . 4
3534elrab 3184 . . 3 MblFnM MblFnM
3625, 35sylibr 217 . 2 MblFnM
37 ovex 6336 . . 3 g
3837a1i 11 . 2 g
399, 19, 36, 38fvmptd 5969 1 sitg g
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 376   wceq 1452   wcel 1904  wral 2756  crab 2760  cvv 3031   cdif 3387  csn 3959  cuni 4190   cmpt 4454  ccnv 4838   cdm 4839   crn 4840  cima 4842  cfv 5589  (class class class)co 6308  cfn 7587  cc0 9557   cpnf 9690  cico 11662  cbs 15199  Scalarcsca 15271  cvsca 15272  ctopn 15398  c0g 15416   g cgsu 15417  RRHomcrrh 28871  sigaGencsigagen 29034  measurescmeas 29091  MblFnMcmbfm 29145  sitgcsitg 29235 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pr 4639 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-sitg 29236 This theorem is referenced by:  sitgclg  29248  sitg0  29252
 Copyright terms: Public domain W3C validator