MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinval Structured version   Unicode version

Theorem sinval 13528
Description: Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
sinval  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )

Proof of Theorem sinval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 6211 . . . . 5  |-  ( x  =  A  ->  (
_i  x.  x )  =  ( _i  x.  A ) )
21fveq2d 5806 . . . 4  |-  ( x  =  A  ->  ( exp `  ( _i  x.  x ) )  =  ( exp `  (
_i  x.  A )
) )
3 oveq2 6211 . . . . 5  |-  ( x  =  A  ->  ( -u _i  x.  x )  =  ( -u _i  x.  A ) )
43fveq2d 5806 . . . 4  |-  ( x  =  A  ->  ( exp `  ( -u _i  x.  x ) )  =  ( exp `  ( -u _i  x.  A ) ) )
52, 4oveq12d 6221 . . 3  |-  ( x  =  A  ->  (
( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  =  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) ) )
65oveq1d 6218 . 2  |-  ( x  =  A  ->  (
( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
7 df-sin 13477 . 2  |-  sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
8 ovex 6228 . 2  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  e. 
_V
96, 7, 8fvmpt 5886 1  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   ` cfv 5529  (class class class)co 6203   CCcc 9395   _ici 9399    x. cmul 9402    - cmin 9710   -ucneg 9711    / cdiv 10108   2c2 10486   expce 13469   sincsin 13471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-iota 5492  df-fun 5531  df-fv 5537  df-ov 6206  df-sin 13477
This theorem is referenced by:  tanval2  13539  resinval  13541  sinneg  13552  efival  13558  sinhval  13560  sinadd  13570  dvsincos  21596  sinper  22086  sineq0  22126  efeq1  22128  sinasin  22427  sineq0ALT  32028
  Copyright terms: Public domain W3C validator