MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinq12gt0 Structured version   Unicode version

Theorem sinq12gt0 23446
Description: The sine of a number strictly between  0 and  pi is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sinq12gt0  |-  ( A  e.  ( 0 (,) pi )  ->  0  <  ( sin `  A
) )

Proof of Theorem sinq12gt0
StepHypRef Expression
1 0xr 9687 . . 3  |-  0  e.  RR*
2 pire 23397 . . . 4  |-  pi  e.  RR
32rexri 9693 . . 3  |-  pi  e.  RR*
4 elioo2 11677 . . 3  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  ( A  e.  ( 0 (,) pi )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  pi ) ) )
51, 3, 4mp2an 676 . 2  |-  ( A  e.  ( 0 (,) pi )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <  pi ) )
6 rehalfcl 10839 . . . . . 6  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  RR )
763ad2ant1 1026 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( A  /  2 )  e.  RR )
8 halfpos2 10842 . . . . . . 7  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <  ( A  /  2 ) ) )
98biimpa 486 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A  /  2 ) )
1093adant3 1025 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( A  /  2
) )
11 2re 10679 . . . . . . . . 9  |-  2  e.  RR
12 2pos 10701 . . . . . . . . 9  |-  0  <  2
1311, 12pm3.2i 456 . . . . . . . 8  |-  ( 2  e.  RR  /\  0  <  2 )
14 ltdiv1 10469 . . . . . . . 8  |-  ( ( A  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( A  < 
pi 
<->  ( A  /  2
)  <  ( pi  /  2 ) ) )
152, 13, 14mp3an23 1352 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  <  pi  <->  ( A  /  2 )  < 
( pi  /  2
) ) )
1615adantr 466 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  <  pi  <->  ( A  /  2 )  <  ( pi  / 
2 ) ) )
1716biimp3a 1364 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( A  /  2 )  < 
( pi  /  2
) )
18 sincosq1lem 23436 . . . . 5  |-  ( ( ( A  /  2
)  e.  RR  /\  0  <  ( A  / 
2 )  /\  ( A  /  2 )  < 
( pi  /  2
) )  ->  0  <  ( sin `  ( A  /  2 ) ) )
197, 10, 17, 18syl3anc 1264 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  ( A  /  2 ) ) )
20 resubcl 9938 . . . . . . . . 9  |-  ( ( pi  e.  RR  /\  A  e.  RR )  ->  ( pi  -  A
)  e.  RR )
212, 20mpan 674 . . . . . . . 8  |-  ( A  e.  RR  ->  (
pi  -  A )  e.  RR )
22 rehalfcl 10839 . . . . . . . 8  |-  ( ( pi  -  A )  e.  RR  ->  (
( pi  -  A
)  /  2 )  e.  RR )
2321, 22syl 17 . . . . . . 7  |-  ( A  e.  RR  ->  (
( pi  -  A
)  /  2 )  e.  RR )
24233ad2ant1 1026 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( pi  -  A
)  /  2 )  e.  RR )
25 posdif 10107 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  pi  e.  RR )  -> 
( A  <  pi  <->  0  <  ( pi  -  A ) ) )
262, 25mpan2 675 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  <  pi  <->  0  <  ( pi  -  A ) ) )
27 halfpos2 10842 . . . . . . . . . 10  |-  ( ( pi  -  A )  e.  RR  ->  (
0  <  ( pi  -  A )  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
2821, 27syl 17 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <  ( pi  -  A )  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
2926, 28bitrd 256 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  <  pi  <->  0  <  ( ( pi  -  A
)  /  2 ) ) )
3029adantr 466 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( A  <  pi  <->  0  <  ( ( pi 
-  A )  / 
2 ) ) )
3130biimp3a 1364 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( ( pi  -  A )  /  2
) )
32 ltsubpos 10106 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  pi  e.  RR )  -> 
( 0  <  A  <->  ( pi  -  A )  <  pi ) )
332, 32mpan2 675 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( pi  -  A )  <  pi ) )
34 ltdiv1 10469 . . . . . . . . . . 11  |-  ( ( ( pi  -  A
)  e.  RR  /\  pi  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( pi 
-  A )  < 
pi 
<->  ( ( pi  -  A )  /  2
)  <  ( pi  /  2 ) ) )
352, 13, 34mp3an23 1352 . . . . . . . . . 10  |-  ( ( pi  -  A )  e.  RR  ->  (
( pi  -  A
)  <  pi  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3621, 35syl 17 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  -  A
)  <  pi  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3733, 36bitrd 256 . . . . . . . 8  |-  ( A  e.  RR  ->  (
0  <  A  <->  ( (
pi  -  A )  /  2 )  < 
( pi  /  2
) ) )
3837biimpa 486 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( pi  -  A )  /  2
)  <  ( pi  /  2 ) )
39383adant3 1025 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( pi  -  A
)  /  2 )  <  ( pi  / 
2 ) )
40 sincosq1lem 23436 . . . . . 6  |-  ( ( ( ( pi  -  A )  /  2
)  e.  RR  /\  0  <  ( ( pi 
-  A )  / 
2 )  /\  (
( pi  -  A
)  /  2 )  <  ( pi  / 
2 ) )  -> 
0  <  ( sin `  ( ( pi  -  A )  /  2
) ) )
4124, 31, 39, 40syl3anc 1264 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  (
( pi  -  A
)  /  2 ) ) )
42 recn 9629 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
43 picn 23398 . . . . . . . . . 10  |-  pi  e.  CC
44 2cnne0 10824 . . . . . . . . . 10  |-  ( 2  e.  CC  /\  2  =/=  0 )
45 divsubdir 10303 . . . . . . . . . 10  |-  ( ( pi  e.  CC  /\  A  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( pi 
-  A )  / 
2 )  =  ( ( pi  /  2
)  -  ( A  /  2 ) ) )
4643, 44, 45mp3an13 1351 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( pi  -  A
)  /  2 )  =  ( ( pi 
/  2 )  -  ( A  /  2
) ) )
4742, 46syl 17 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( pi  -  A
)  /  2 )  =  ( ( pi 
/  2 )  -  ( A  /  2
) ) )
4847fveq2d 5881 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( sin `  (
( pi  /  2
)  -  ( A  /  2 ) ) ) )
496recnd 9669 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  /  2 )  e.  CC )
50 sinhalfpim 23432 . . . . . . . 8  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  -  ( A  /  2
) ) )  =  ( cos `  ( A  /  2 ) ) )
5149, 50syl 17 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  -  ( A  /  2
) ) )  =  ( cos `  ( A  /  2 ) ) )
5248, 51eqtrd 2463 . . . . . 6  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( cos `  ( A  /  2 ) ) )
53523ad2ant1 1026 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( sin `  ( ( pi 
-  A )  / 
2 ) )  =  ( cos `  ( A  /  2 ) ) )
5441, 53breqtrd 4445 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( cos `  ( A  /  2 ) ) )
55 resincl 14179 . . . . . . . 8  |-  ( ( A  /  2 )  e.  RR  ->  ( sin `  ( A  / 
2 ) )  e.  RR )
56 recoscl 14180 . . . . . . . 8  |-  ( ( A  /  2 )  e.  RR  ->  ( cos `  ( A  / 
2 ) )  e.  RR )
5755, 56jca 534 . . . . . . 7  |-  ( ( A  /  2 )  e.  RR  ->  (
( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR ) )
58 axmulgt0 9708 . . . . . . 7  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
596, 57, 583syl 18 . . . . . 6  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
60 remulcl 9624 . . . . . . . . 9  |-  ( ( ( sin `  ( A  /  2 ) )  e.  RR  /\  ( cos `  ( A  / 
2 ) )  e.  RR )  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
616, 57, 603syl 18 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )
62 axmulgt0 9708 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) )  e.  RR )  ->  ( ( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6311, 61, 62sylancr 667 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0  <  2  /\  0  <  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6412, 63mpani 680 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( ( sin `  ( A  / 
2 ) )  x.  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6559, 64syld 45 . . . . 5  |-  ( A  e.  RR  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
66653ad2ant1 1026 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  (
( 0  <  ( sin `  ( A  / 
2 ) )  /\  0  <  ( cos `  ( A  /  2 ) ) )  ->  0  <  ( 2  x.  ( ( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) ) )
6719, 54, 66mp2and 683 . . 3  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
68 2cn 10680 . . . . . . . 8  |-  2  e.  CC
69 2ne0 10702 . . . . . . . 8  |-  2  =/=  0
70 divcan2 10278 . . . . . . . 8  |-  ( ( A  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( A  /  2 ) )  =  A )
7168, 69, 70mp3an23 1352 . . . . . . 7  |-  ( A  e.  CC  ->  (
2  x.  ( A  /  2 ) )  =  A )
7242, 71syl 17 . . . . . 6  |-  ( A  e.  RR  ->  (
2  x.  ( A  /  2 ) )  =  A )
7372fveq2d 5881 . . . . 5  |-  ( A  e.  RR  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( sin `  A
) )
74 sin2t 14216 . . . . . 6  |-  ( ( A  /  2 )  e.  CC  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7549, 74syl 17 . . . . 5  |-  ( A  e.  RR  ->  ( sin `  ( 2  x.  ( A  /  2
) ) )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7673, 75eqtr3d 2465 . . . 4  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
77763ad2ant1 1026 . . 3  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  ( sin `  A )  =  ( 2  x.  (
( sin `  ( A  /  2 ) )  x.  ( cos `  ( A  /  2 ) ) ) ) )
7867, 77breqtrrd 4447 . 2  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <  pi )  ->  0  <  ( sin `  A
) )
795, 78sylbi 198 1  |-  ( A  e.  ( 0 (,) pi )  ->  0  <  ( sin `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   class class class wbr 4420   ` cfv 5597  (class class class)co 6301   CCcc 9537   RRcr 9538   0cc0 9539    x. cmul 9544   RR*cxr 9674    < clt 9675    - cmin 9860    / cdiv 10269   2c2 10659   (,)cioo 11635   sincsin 14101   cosccos 14102   picpi 14104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-map 7478  df-pm 7479  df-ixp 7527  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-fi 7927  df-sup 7958  df-inf 7959  df-oi 8027  df-card 8374  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12027  df-seq 12213  df-exp 12272  df-fac 12459  df-bc 12487  df-hash 12515  df-shft 13116  df-cj 13148  df-re 13149  df-im 13150  df-sqrt 13284  df-abs 13285  df-limsup 13511  df-clim 13537  df-rlim 13538  df-sum 13738  df-ef 14106  df-sin 14108  df-cos 14109  df-pi 14111  df-struct 15108  df-ndx 15109  df-slot 15110  df-base 15111  df-sets 15112  df-ress 15113  df-plusg 15188  df-mulr 15189  df-starv 15190  df-sca 15191  df-vsca 15192  df-ip 15193  df-tset 15194  df-ple 15195  df-ds 15197  df-unif 15198  df-hom 15199  df-cco 15200  df-rest 15306  df-topn 15307  df-0g 15325  df-gsum 15326  df-topgen 15327  df-pt 15328  df-prds 15331  df-xrs 15385  df-qtop 15391  df-imas 15392  df-xps 15395  df-mre 15477  df-mrc 15478  df-acs 15480  df-mgm 16473  df-sgrp 16512  df-mnd 16522  df-submnd 16568  df-mulg 16661  df-cntz 16956  df-cmn 17417  df-psmet 18947  df-xmet 18948  df-met 18949  df-bl 18950  df-mopn 18951  df-fbas 18952  df-fg 18953  df-cnfld 18956  df-top 19905  df-bases 19906  df-topon 19907  df-topsp 19908  df-cld 20018  df-ntr 20019  df-cls 20020  df-nei 20098  df-lp 20136  df-perf 20137  df-cn 20227  df-cnp 20228  df-haus 20315  df-tx 20561  df-hmeo 20754  df-fil 20845  df-fm 20937  df-flim 20938  df-flf 20939  df-xms 21319  df-ms 21320  df-tms 21321  df-cncf 21894  df-limc 22805  df-dv 22806
This theorem is referenced by:  sinq12ge0  23447  sinq34lt0t  23448  cosq14gt0  23449  sineq0  23460  cosordlem  23464  tan2h  31848  sineq0ALT  37192  wallispilem1  37744
  Copyright terms: Public domain W3C validator