MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sineq0 Structured version   Unicode version

Theorem sineq0 23418
Description: A complex number whose sine is zero is an integer multiple of  pi. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
sineq0  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  <->  ( A  /  pi )  e.  ZZ ) )

Proof of Theorem sineq0
StepHypRef Expression
1 sinval 14119 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( sin `  A )  =  ( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) ) )
21eqeq1d 2430 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  <->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  0 ) )
3 ax-icn 9549 . . . . . . . . . . . . . . . . . . . 20  |-  _i  e.  CC
4 mulcl 9574 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
53, 4mpan 674 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
6 efcl 14080 . . . . . . . . . . . . . . . . . . 19  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
75, 6syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  e.  CC )
8 negicn 9827 . . . . . . . . . . . . . . . . . . . 20  |-  -u _i  e.  CC
9 mulcl 9574 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
108, 9mpan 674 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
11 efcl 14080 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  ( exp `  ( -u _i  x.  A ) )  e.  CC )
137, 12subcld 9937 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC )
14 2mulicn 10787 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  _i )  e.  CC
15 2muline0 10788 . . . . . . . . . . . . . . . . . 18  |-  ( 2  x.  _i )  =/=  0
16 diveq0 10231 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  /\  (
2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )  -> 
( ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  (
2  x.  _i ) )  =  0  <->  (
( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  =  0 ) )
1714, 15, 16mp3an23 1352 . . . . . . . . . . . . . . . . 17  |-  ( ( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  0  <->  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  =  0 ) )
1813, 17syl 17 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  /  ( 2  x.  _i ) )  =  0  <->  ( ( exp `  ( _i  x.  A
) )  -  ( exp `  ( -u _i  x.  A ) ) )  =  0 ) )
197, 12subeq0ad 9947 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  -  ( exp `  ( -u _i  x.  A ) ) )  =  0  <->  ( exp `  ( _i  x.  A
) )  =  ( exp `  ( -u _i  x.  A ) ) ) )
202, 18, 193bitrd 282 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  <->  ( exp `  ( _i  x.  A ) )  =  ( exp `  ( -u _i  x.  A ) ) ) )
21 oveq2 6257 . . . . . . . . . . . . . . . 16  |-  ( ( exp `  ( _i  x.  A ) )  =  ( exp `  ( -u _i  x.  A ) )  ->  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) ) )
22 2cn 10631 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  CC
23 mul12 9750 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( _i  e.  CC  /\  2  e.  CC  /\  A  e.  CC )  ->  (
_i  x.  ( 2  x.  A ) )  =  ( 2  x.  ( _i  x.  A
) ) )
243, 22, 23mp3an12 1350 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  (
_i  x.  ( 2  x.  A ) )  =  ( 2  x.  ( _i  x.  A
) ) )
2552timesd 10806 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  (
2  x.  ( _i  x.  A ) )  =  ( ( _i  x.  A )  +  ( _i  x.  A
) ) )
2624, 25eqtrd 2462 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  CC  ->  (
_i  x.  ( 2  x.  A ) )  =  ( ( _i  x.  A )  +  ( _i  x.  A
) ) )
2726fveq2d 5829 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( 2  x.  A
) ) )  =  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  A ) ) ) )
28 efadd 14091 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  (
_i  x.  A )
) ) )
295, 5, 28syl2anc 665 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  A )  +  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) ) )
3027, 29eqtr2d 2463 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) )  =  ( exp `  (
_i  x.  ( 2  x.  A ) ) ) )
31 efadd 14091 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( _i  x.  A
)  e.  CC  /\  ( -u _i  x.  A
)  e.  CC )  ->  ( exp `  (
( _i  x.  A
)  +  ( -u _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A ) )  x.  ( exp `  ( -u _i  x.  A ) ) ) )
325, 10, 31syl2anc 665 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A
) )  x.  ( exp `  ( -u _i  x.  A ) ) ) )
333negidi 9894 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( _i  +  -u _i )  =  0
3433oveq1i 6259 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( _i  +  -u _i )  x.  A )  =  ( 0  x.  A )
35 adddir 9585 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( _i  e.  CC  /\  -u _i  e.  CC  /\  A  e.  CC )  ->  ( ( _i  +  -u _i )  x.  A
)  =  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )
363, 8, 35mp3an12 1350 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  CC  ->  (
( _i  +  -u _i )  x.  A
)  =  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )
37 mul02 9762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
3834, 36, 373eqtr3a 2486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( -u _i  x.  A ) )  =  0 )
3938fveq2d 5829 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )  =  ( exp `  0
) )
40 ef0 14088 . . . . . . . . . . . . . . . . . . . 20  |-  ( exp `  0 )  =  1
4139, 40syl6eq 2478 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  CC  ->  ( exp `  ( ( _i  x.  A )  +  ( -u _i  x.  A ) ) )  =  1 )
4232, 41eqtr3d 2464 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  =  1 )
4330, 42eqeq12d 2443 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  <-> 
( exp `  (
_i  x.  ( 2  x.  A ) ) )  =  1 ) )
44 fveq2 5825 . . . . . . . . . . . . . . . . 17  |-  ( ( exp `  ( _i  x.  ( 2  x.  A ) ) )  =  1  ->  ( abs `  ( exp `  (
_i  x.  ( 2  x.  A ) ) ) )  =  ( abs `  1 ) )
4543, 44syl6bi 231 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( _i  x.  A
) ) )  =  ( ( exp `  (
_i  x.  A )
)  x.  ( exp `  ( -u _i  x.  A ) ) )  ->  ( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  ( abs `  1
) ) )
4621, 45syl5 33 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
)  =  ( exp `  ( -u _i  x.  A ) )  -> 
( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  ( abs `  1
) ) )
4720, 46sylbid 218 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  -> 
( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  ( abs `  1
) ) )
48 abs1 13304 . . . . . . . . . . . . . . . 16  |-  ( abs `  1 )  =  1
4948eqeq2i 2440 . . . . . . . . . . . . . . 15  |-  ( ( abs `  ( exp `  ( _i  x.  (
2  x.  A ) ) ) )  =  ( abs `  1
)  <->  ( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  1 )
50 2re 10630 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
51 2ne0 10653 . . . . . . . . . . . . . . . . 17  |-  2  =/=  0
52 mulre 13128 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  2  e.  RR  /\  2  =/=  0 )  ->  ( A  e.  RR  <->  ( 2  x.  A )  e.  RR ) )
5350, 51, 52mp3an23 1352 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( 2  x.  A )  e.  RR ) )
54 mulcl 9574 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
5522, 54mpan 674 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  (
2  x.  A )  e.  CC )
56 absefib 14195 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  x.  A )  e.  CC  ->  (
( 2  x.  A
)  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  ( 2  x.  A ) ) ) )  =  1 ) )
5755, 56syl 17 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( 2  x.  A
)  e.  RR  <->  ( abs `  ( exp `  (
_i  x.  ( 2  x.  A ) ) ) )  =  1 ) )
5853, 57bitr2d 257 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  1  <->  A  e.  RR ) )
5949, 58syl5bb 260 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( _i  x.  ( 2  x.  A
) ) ) )  =  ( abs `  1
)  <->  A  e.  RR ) )
6047, 59sylibd 217 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  ->  A  e.  RR )
)
6160imp 430 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  A  e.  RR )
62 pirp 23358 . . . . . . . . . . . 12  |-  pi  e.  RR+
63 modval 12048 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  ( A  mod  pi )  =  ( A  -  (
pi  x.  ( |_ `  ( A  /  pi ) ) ) ) )
6461, 62, 63sylancl 666 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  =  ( A  -  ( pi  x.  ( |_ `  ( A  /  pi ) ) ) ) )
65 picn 23356 . . . . . . . . . . . . 13  |-  pi  e.  CC
66 pire 23355 . . . . . . . . . . . . . . . . 17  |-  pi  e.  RR
67 pipos 23357 . . . . . . . . . . . . . . . . . 18  |-  0  <  pi
6866, 67gt0ne0ii 10101 . . . . . . . . . . . . . . . . 17  |-  pi  =/=  0
69 redivcl 10277 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  pi  e.  RR  /\  pi  =/=  0 )  ->  ( A  /  pi )  e.  RR )
7066, 68, 69mp3an23 1352 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  ( A  /  pi )  e.  RR )
7161, 70syl 17 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  /  pi )  e.  RR )
7271flcld 11984 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( |_ `  ( A  /  pi ) )  e.  ZZ )
7372zcnd 10992 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( |_ `  ( A  /  pi ) )  e.  CC )
74 mulcl 9574 . . . . . . . . . . . . 13  |-  ( ( pi  e.  CC  /\  ( |_ `  ( A  /  pi ) )  e.  CC )  -> 
( pi  x.  ( |_ `  ( A  /  pi ) ) )  e.  CC )
7565, 73, 74sylancr 667 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( pi  x.  ( |_ `  ( A  /  pi ) ) )  e.  CC )
76 negsub 9873 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( pi  x.  ( |_ `  ( A  /  pi ) ) )  e.  CC )  ->  ( A  +  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) ) )  =  ( A  -  ( pi  x.  ( |_ `  ( A  /  pi ) ) ) ) )
7775, 76syldan 472 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  +  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) ) )  =  ( A  -  ( pi  x.  ( |_ `  ( A  /  pi ) ) ) ) )
78 mulcom 9576 . . . . . . . . . . . . . . 15  |-  ( ( pi  e.  CC  /\  ( |_ `  ( A  /  pi ) )  e.  CC )  -> 
( pi  x.  ( |_ `  ( A  /  pi ) ) )  =  ( ( |_ `  ( A  /  pi ) )  x.  pi ) )
7965, 73, 78sylancr 667 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( pi  x.  ( |_ `  ( A  /  pi ) ) )  =  ( ( |_ `  ( A  /  pi ) )  x.  pi ) )
8079negeqd 9820 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) )  = 
-u ( ( |_
`  ( A  /  pi ) )  x.  pi ) )
81 mulneg1 10006 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  ( A  /  pi ) )  e.  CC  /\  pi  e.  CC )  ->  ( -u ( |_ `  ( A  /  pi ) )  x.  pi )  = 
-u ( ( |_
`  ( A  /  pi ) )  x.  pi ) )
8273, 65, 81sylancl 666 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( -u ( |_ `  ( A  /  pi ) )  x.  pi )  =  -u ( ( |_ `  ( A  /  pi ) )  x.  pi ) )
8380, 82eqtr4d 2465 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) )  =  ( -u ( |_
`  ( A  /  pi ) )  x.  pi ) )
8483oveq2d 6265 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  +  -u ( pi  x.  ( |_ `  ( A  /  pi ) ) ) )  =  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) )
8564, 77, 843eqtr2d 2468 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  =  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) )
8685fveq2d 5829 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( sin `  ( A  mod  pi ) )  =  ( sin `  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) ) )
8786fveq2d 5829 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  =  ( abs `  ( sin `  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) ) ) )
8872znegcld 10993 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  -u ( |_ `  ( A  /  pi ) )  e.  ZZ )
89 abssinper 23415 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  -u ( |_ `  ( A  /  pi ) )  e.  ZZ )  -> 
( abs `  ( sin `  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
9088, 89syldan 472 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  +  ( -u ( |_ `  ( A  /  pi ) )  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
91 simpr 462 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( sin `  A
)  =  0 )
9291fveq2d 5829 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  A ) )  =  ( abs `  0
) )
9387, 90, 923eqtrd 2466 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  =  ( abs `  0
) )
94 abs0 13292 . . . . . . 7  |-  ( abs `  0 )  =  0
9593, 94syl6eq 2478 . . . . . 6  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  =  0 )
96 modcl 12050 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  ( A  mod  pi )  e.  RR )
9761, 62, 96sylancl 666 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  e.  RR )
98 modlt 12057 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  ( A  mod  pi )  < 
pi )
9961, 62, 98sylancl 666 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  <  pi )
10097, 99jca 534 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( ( A  mod  pi )  e.  RR  /\  ( A  mod  pi )  <  pi ) )
101100biantrurd 510 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  <->  ( (
( A  mod  pi )  e.  RR  /\  ( A  mod  pi )  < 
pi )  /\  0  <  ( A  mod  pi ) ) ) )
102 0re 9594 . . . . . . . . . . . 12  |-  0  e.  RR
103 rexr 9637 . . . . . . . . . . . . 13  |-  ( 0  e.  RR  ->  0  e.  RR* )
104 rexr 9637 . . . . . . . . . . . . 13  |-  ( pi  e.  RR  ->  pi  e.  RR* )
105 elioo2 11628 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\  pi  e.  RR* )  ->  (
( A  mod  pi )  e.  ( 0 (,) pi )  <->  ( ( A  mod  pi )  e.  RR  /\  0  < 
( A  mod  pi )  /\  ( A  mod  pi )  <  pi ) ) )
106103, 104, 105syl2an 479 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( ( A  mod  pi )  e.  (
0 (,) pi )  <-> 
( ( A  mod  pi )  e.  RR  /\  0  <  ( A  mod  pi )  /\  ( A  mod  pi )  <  pi ) ) )
107102, 66, 106mp2an 676 . . . . . . . . . . 11  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  <->  ( ( A  mod  pi )  e.  RR  /\  0  < 
( A  mod  pi )  /\  ( A  mod  pi )  <  pi ) )
108 3anan32 994 . . . . . . . . . . 11  |-  ( ( ( A  mod  pi )  e.  RR  /\  0  <  ( A  mod  pi )  /\  ( A  mod  pi )  <  pi )  <-> 
( ( ( A  mod  pi )  e.  RR  /\  ( A  mod  pi )  < 
pi )  /\  0  <  ( A  mod  pi ) ) )
109107, 108bitri 252 . . . . . . . . . 10  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  <->  ( (
( A  mod  pi )  e.  RR  /\  ( A  mod  pi )  < 
pi )  /\  0  <  ( A  mod  pi ) ) )
110101, 109syl6bbr 266 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  <->  ( A  mod  pi )  e.  ( 0 (,) pi ) ) )
111 sinq12gt0 23404 . . . . . . . . . 10  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  0  <  ( sin `  ( A  mod  pi ) ) )
112 elioore 11617 . . . . . . . . . . . 12  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  ( A  mod  pi )  e.  RR )
113112resincld 14140 . . . . . . . . . . 11  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  ( sin `  ( A  mod  pi ) )  e.  RR )
114 ltle 9673 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR  /\  ( sin `  ( A  mod  pi ) )  e.  RR )  -> 
( 0  <  ( sin `  ( A  mod  pi ) )  ->  0  <_  ( sin `  ( A  mod  pi ) ) ) )
115102, 113, 114sylancr 667 . . . . . . . . . . . 12  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  (
0  <  ( sin `  ( A  mod  pi ) )  ->  0  <_  ( sin `  ( A  mod  pi ) ) ) )
116111, 115mpd 15 . . . . . . . . . . 11  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  0  <_  ( sin `  ( A  mod  pi ) ) )
117113, 116absidd 13428 . . . . . . . . . 10  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  ( abs `  ( sin `  ( A  mod  pi ) ) )  =  ( sin `  ( A  mod  pi ) ) )
118111, 117breqtrrd 4393 . . . . . . . . 9  |-  ( ( A  mod  pi )  e.  ( 0 (,) pi )  ->  0  <  ( abs `  ( sin `  ( A  mod  pi ) ) ) )
119110, 118syl6bi 231 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  -> 
0  <  ( abs `  ( sin `  ( A  mod  pi ) ) ) ) )
12097resincld 14140 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( sin `  ( A  mod  pi ) )  e.  RR )
121120recnd 9620 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( sin `  ( A  mod  pi ) )  e.  CC )
122121abscld 13441 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  e.  RR )
123 ltneOLD 9682 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( abs `  ( sin `  ( A  mod  pi ) ) )  e.  RR  /\  0  < 
( abs `  ( sin `  ( A  mod  pi ) ) ) )  ->  ( abs `  ( sin `  ( A  mod  pi ) ) )  =/=  0 )
1241233expia 1207 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( abs `  ( sin `  ( A  mod  pi ) ) )  e.  RR )  ->  (
0  <  ( abs `  ( sin `  ( A  mod  pi ) ) )  ->  ( abs `  ( sin `  ( A  mod  pi ) ) )  =/=  0 ) )
125102, 122, 124sylancr 667 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( abs `  ( sin `  ( A  mod  pi ) ) )  ->  ( abs `  ( sin `  ( A  mod  pi ) ) )  =/=  0 ) )
126119, 125syld 45 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  -> 
( abs `  ( sin `  ( A  mod  pi ) ) )  =/=  0 ) )
127126necon2bd 2617 . . . . . 6  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( ( abs `  ( sin `  ( A  mod  pi ) ) )  =  0  ->  -.  0  <  ( A  mod  pi ) ) )
12895, 127mpd 15 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  ->  -.  0  <  ( A  mod  pi ) )
129 modge0 12056 . . . . . . . 8  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  0  <_  ( A  mod  pi ) )
13061, 62, 129sylancl 666 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
0  <_  ( A  mod  pi ) )
131 leloe 9671 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( A  mod  pi )  e.  RR )  -> 
( 0  <_  ( A  mod  pi )  <->  ( 0  <  ( A  mod  pi )  \/  0  =  ( A  mod  pi ) ) ) )
132102, 97, 131sylancr 667 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <_  ( A  mod  pi )  <->  ( 0  <  ( A  mod  pi )  \/  0  =  ( A  mod  pi ) ) ) )
133130, 132mpbid 213 . . . . . 6  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( 0  <  ( A  mod  pi )  \/  0  =  ( A  mod  pi ) ) )
134133ord 378 . . . . 5  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( -.  0  < 
( A  mod  pi )  ->  0  =  ( A  mod  pi ) ) )
135128, 134mpd 15 . . . 4  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
0  =  ( A  mod  pi ) )
136135eqcomd 2434 . . 3  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  mod  pi )  =  0 )
137 mod0 12053 . . . 4  |-  ( ( A  e.  RR  /\  pi  e.  RR+ )  ->  (
( A  mod  pi )  =  0  <->  ( A  /  pi )  e.  ZZ ) )
13861, 62, 137sylancl 666 . . 3  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( ( A  mod  pi )  =  0  <->  ( A  /  pi )  e.  ZZ ) )
139136, 138mpbid 213 . 2  |-  ( ( A  e.  CC  /\  ( sin `  A )  =  0 )  -> 
( A  /  pi )  e.  ZZ )
140 divcan1 10230 . . . . 5  |-  ( ( A  e.  CC  /\  pi  e.  CC  /\  pi  =/=  0 )  ->  (
( A  /  pi )  x.  pi )  =  A )
14165, 68, 140mp3an23 1352 . . . 4  |-  ( A  e.  CC  ->  (
( A  /  pi )  x.  pi )  =  A )
142141fveq2d 5829 . . 3  |-  ( A  e.  CC  ->  ( sin `  ( ( A  /  pi )  x.  pi ) )  =  ( sin `  A
) )
143 sinkpi 23416 . . 3  |-  ( ( A  /  pi )  e.  ZZ  ->  ( sin `  ( ( A  /  pi )  x.  pi ) )  =  0 )
144142, 143sylan9req 2483 . 2  |-  ( ( A  e.  CC  /\  ( A  /  pi )  e.  ZZ )  ->  ( sin `  A
)  =  0 )
145139, 144impbida 840 1  |-  ( A  e.  CC  ->  (
( sin `  A
)  =  0  <->  ( A  /  pi )  e.  ZZ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599   class class class wbr 4366   ` cfv 5544  (class class class)co 6249   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491   _ici 9492    + caddc 9493    x. cmul 9495   RR*cxr 9625    < clt 9626    <_ cle 9627    - cmin 9811   -ucneg 9812    / cdiv 10220   2c2 10610   ZZcz 10888   RR+crp 11253   (,)cioo 11586   |_cfl 11976    mod cmo 12046   abscabs 13241   expce 14057   sincsin 14059   picpi 14062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-supp 6870  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-2o 7138  df-oadd 7141  df-er 7318  df-map 7429  df-pm 7430  df-ixp 7478  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fsupp 7837  df-fi 7878  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-4 10621  df-5 10622  df-6 10623  df-7 10624  df-8 10625  df-9 10626  df-10 10627  df-n0 10821  df-z 10889  df-dec 11003  df-uz 11111  df-q 11216  df-rp 11254  df-xneg 11360  df-xadd 11361  df-xmul 11362  df-ioo 11590  df-ioc 11591  df-ico 11592  df-icc 11593  df-fz 11736  df-fzo 11867  df-fl 11978  df-mod 12047  df-seq 12164  df-exp 12223  df-fac 12410  df-bc 12438  df-hash 12466  df-shft 13074  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-limsup 13469  df-clim 13495  df-rlim 13496  df-sum 13696  df-ef 14064  df-sin 14066  df-cos 14067  df-pi 14069  df-struct 15066  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-mulr 15147  df-starv 15148  df-sca 15149  df-vsca 15150  df-ip 15151  df-tset 15152  df-ple 15153  df-ds 15155  df-unif 15156  df-hom 15157  df-cco 15158  df-rest 15264  df-topn 15265  df-0g 15283  df-gsum 15284  df-topgen 15285  df-pt 15286  df-prds 15289  df-xrs 15343  df-qtop 15349  df-imas 15350  df-xps 15353  df-mre 15435  df-mrc 15436  df-acs 15438  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-submnd 16526  df-mulg 16619  df-cntz 16914  df-cmn 17375  df-psmet 18905  df-xmet 18906  df-met 18907  df-bl 18908  df-mopn 18909  df-fbas 18910  df-fg 18911  df-cnfld 18914  df-top 19863  df-bases 19864  df-topon 19865  df-topsp 19866  df-cld 19976  df-ntr 19977  df-cls 19978  df-nei 20056  df-lp 20094  df-perf 20095  df-cn 20185  df-cnp 20186  df-haus 20273  df-tx 20519  df-hmeo 20712  df-fil 20803  df-fm 20895  df-flim 20896  df-flf 20897  df-xms 21277  df-ms 21278  df-tms 21279  df-cncf 21852  df-limc 22763  df-dv 22764
This theorem is referenced by:  coseq1  23419  efeq1  23420  cosne0  23421  logf1o2  23537  dvtanlemOLD  31898  coseq0  37622  sinaover2ne0  37626  dirker2re  37837  dirkerdenne0  37838  dirkertrigeqlem3  37845  dirkertrigeq  37846  dirkercncflem1  37848  dirkercncflem2  37849  dirkercncflem4  37851  fourierdlem103  37956  fourierdlem104  37957
  Copyright terms: Public domain W3C validator