MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq4sgn Structured version   Unicode version

Theorem sincosq4sgn 21943
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq4sgn  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  ->  (
( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )

Proof of Theorem sincosq4sgn
StepHypRef Expression
1 3re 10387 . . . . 5  |-  3  e.  RR
2 halfpire 21906 . . . . 5  |-  ( pi 
/  2 )  e.  RR
31, 2remulcli 9392 . . . 4  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
43rexri 9428 . . 3  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
5 2re 10383 . . . . 5  |-  2  e.  RR
6 pire 21901 . . . . 5  |-  pi  e.  RR
75, 6remulcli 9392 . . . 4  |-  ( 2  x.  pi )  e.  RR
87rexri 9428 . . 3  |-  ( 2  x.  pi )  e. 
RR*
9 elioo2 11333 . . 3  |-  ( ( ( 3  x.  (
pi  /  2 ) )  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  ( A  e.  ( (
3  x.  ( pi 
/  2 ) ) (,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  ( 3  x.  ( pi  / 
2 ) )  < 
A  /\  A  <  ( 2  x.  pi ) ) ) )
104, 8, 9mp2an 672 . 2  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  ( 3  x.  ( pi  / 
2 ) )  < 
A  /\  A  <  ( 2  x.  pi ) ) )
11 df-3 10373 . . . . . . . . . . . 12  |-  3  =  ( 2  +  1 )
1211oveq1i 6096 . . . . . . . . . . 11  |-  ( 3  x.  ( pi  / 
2 ) )  =  ( ( 2  +  1 )  x.  (
pi  /  2 ) )
13 2cn 10384 . . . . . . . . . . . 12  |-  2  e.  CC
14 ax-1cn 9332 . . . . . . . . . . . 12  |-  1  e.  CC
152recni 9390 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e.  CC
1613, 14, 15adddiri 9389 . . . . . . . . . . 11  |-  ( ( 2  +  1 )  x.  ( pi  / 
2 ) )  =  ( ( 2  x.  ( pi  /  2
) )  +  ( 1  x.  ( pi 
/  2 ) ) )
176recni 9390 . . . . . . . . . . . . 13  |-  pi  e.  CC
18 2ne0 10406 . . . . . . . . . . . . 13  |-  2  =/=  0
1917, 13, 18divcan2i 10066 . . . . . . . . . . . 12  |-  ( 2  x.  ( pi  / 
2 ) )  =  pi
2015mulid2i 9381 . . . . . . . . . . . 12  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2119, 20oveq12i 6098 . . . . . . . . . . 11  |-  ( ( 2  x.  ( pi 
/  2 ) )  +  ( 1  x.  ( pi  /  2
) ) )  =  ( pi  +  ( pi  /  2 ) )
2212, 16, 213eqtrri 2463 . . . . . . . . . 10  |-  ( pi  +  ( pi  / 
2 ) )  =  ( 3  x.  (
pi  /  2 ) )
2322breq1i 4294 . . . . . . . . 9  |-  ( ( pi  +  ( pi 
/  2 ) )  <  A  <->  ( 3  x.  ( pi  / 
2 ) )  < 
A )
24 ltaddsub 9805 . . . . . . . . . 10  |-  ( ( pi  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( pi  +  ( pi  /  2
) )  <  A  <->  pi 
<  ( A  -  ( pi  /  2
) ) ) )
256, 2, 24mp3an12 1304 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  +  ( pi  /  2 ) )  <  A  <->  pi  <  ( A  -  ( pi 
/  2 ) ) ) )
2623, 25syl5bbr 259 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( 3  x.  (
pi  /  2 ) )  <  A  <->  pi  <  ( A  -  ( pi 
/  2 ) ) ) )
27 ltsubadd 9801 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR )  ->  ( ( A  -  ( pi  / 
2 ) )  < 
( 3  x.  (
pi  /  2 ) )  <->  A  <  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) ) ) )
282, 3, 27mp3an23 1306 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) )  <->  A  <  ( ( 3  x.  (
pi  /  2 ) )  +  ( pi 
/  2 ) ) ) )
29 df-4 10374 . . . . . . . . . . . . 13  |-  4  =  ( 3  +  1 )
3029oveq1i 6096 . . . . . . . . . . . 12  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( ( 3  +  1 )  x.  (
pi  /  2 ) )
311recni 9390 . . . . . . . . . . . . 13  |-  3  e.  CC
3231, 14, 15adddiri 9389 . . . . . . . . . . . 12  |-  ( ( 3  +  1 )  x.  ( pi  / 
2 ) )  =  ( ( 3  x.  ( pi  /  2
) )  +  ( 1  x.  ( pi 
/  2 ) ) )
3320oveq2i 6097 . . . . . . . . . . . 12  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( 1  x.  ( pi  /  2
) ) )  =  ( ( 3  x.  ( pi  /  2
) )  +  ( pi  /  2 ) )
3430, 32, 333eqtrri 2463 . . . . . . . . . . 11  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) )  =  ( 4  x.  (
pi  /  2 ) )
35 4cn 10391 . . . . . . . . . . . . 13  |-  4  e.  CC
36 2cnne0 10528 . . . . . . . . . . . . 13  |-  ( 2  e.  CC  /\  2  =/=  0 )
37 div12 10008 . . . . . . . . . . . . 13  |-  ( ( 4  e.  CC  /\  pi  e.  CC  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( 4  x.  ( pi  /  2
) )  =  ( pi  x.  ( 4  /  2 ) ) )
3835, 17, 36, 37mp3an 1314 . . . . . . . . . . . 12  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( pi  x.  (
4  /  2 ) )
39 4d2e2 10470 . . . . . . . . . . . . . 14  |-  ( 4  /  2 )  =  2
4039oveq2i 6097 . . . . . . . . . . . . 13  |-  ( pi  x.  ( 4  / 
2 ) )  =  ( pi  x.  2 )
4117, 13mulcomi 9384 . . . . . . . . . . . . 13  |-  ( pi  x.  2 )  =  ( 2  x.  pi )
4240, 41eqtri 2458 . . . . . . . . . . . 12  |-  ( pi  x.  ( 4  / 
2 ) )  =  ( 2  x.  pi )
4338, 42eqtri 2458 . . . . . . . . . . 11  |-  ( 4  x.  ( pi  / 
2 ) )  =  ( 2  x.  pi )
4434, 43eqtri 2458 . . . . . . . . . 10  |-  ( ( 3  x.  ( pi 
/  2 ) )  +  ( pi  / 
2 ) )  =  ( 2  x.  pi )
4544breq2i 4295 . . . . . . . . 9  |-  ( A  <  ( ( 3  x.  ( pi  / 
2 ) )  +  ( pi  /  2
) )  <->  A  <  ( 2  x.  pi ) )
4628, 45syl6rbb 262 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  <  ( 2  x.  pi )  <->  ( A  -  ( pi  / 
2 ) )  < 
( 3  x.  (
pi  /  2 ) ) ) )
4726, 46anbi12d 710 . . . . . . 7  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  <-> 
( pi  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) ) ) ) )
48 resubcl 9665 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  -  ( pi  /  2
) )  e.  RR )
492, 48mpan2 671 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  RR )
506rexri 9428 . . . . . . . . . . 11  |-  pi  e.  RR*
51 elioo2 11333 . . . . . . . . . . 11  |-  ( ( pi  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  (
( A  -  (
pi  /  2 ) )  e.  ( pi
(,) ( 3  x.  ( pi  /  2
) ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi 
/  2 ) )  /\  ( A  -  ( pi  /  2
) )  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
5250, 4, 51mp2an 672 . . . . . . . . . 10  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi 
/  2 ) )  /\  ( A  -  ( pi  /  2
) )  <  (
3  x.  ( pi 
/  2 ) ) ) )
53 sincosq3sgn 21942 . . . . . . . . . 10  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
5452, 53sylbir 213 . . . . . . . . 9  |-  ( ( ( A  -  (
pi  /  2 ) )  e.  RR  /\  pi  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
5549, 54syl3an1 1251 . . . . . . . 8  |-  ( ( A  e.  RR  /\  pi  <  ( A  -  ( pi  /  2
) )  /\  ( A  -  ( pi  /  2 ) )  < 
( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
56553expib 1190 . . . . . . 7  |-  ( A  e.  RR  ->  (
( pi  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
5747, 56sylbid 215 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
5849resincld 13419 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( A  -  ( pi  /  2
) ) )  e.  RR )
5958lt0neg1d 9901 . . . . . . 7  |-  ( A  e.  RR  ->  (
( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  <->  0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) ) ) )
6059anbi1d 704 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( sin `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 )  <->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
6157, 60sylibd 214 . . . . 5  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
62 recn 9364 . . . . . . . . . 10  |-  ( A  e.  RR  ->  A  e.  CC )
63 pncan3 9610 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  CC  /\  A  e.  CC )  ->  ( ( pi  / 
2 )  +  ( A  -  ( pi 
/  2 ) ) )  =  A )
6415, 62, 63sylancr 663 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( pi  /  2
)  +  ( A  -  ( pi  / 
2 ) ) )  =  A )
6564fveq2d 5690 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  A
) )
6649recnd 9404 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  CC )
67 coshalfpip 21936 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6866, 67syl 16 . . . . . . . 8  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6965, 68eqtr3d 2472 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  A )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
7069breq2d 4299 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( cos `  A )  <->  0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) ) ) )
7164fveq2d 5690 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( sin `  A
) )
72 sinhalfpip 21934 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7366, 72syl 16 . . . . . . . 8  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7471, 73eqtr3d 2472 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
7574breq1d 4297 . . . . . 6  |-  ( A  e.  RR  ->  (
( sin `  A
)  <  0  <->  ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
7670, 75anbi12d 710 . . . . 5  |-  ( A  e.  RR  ->  (
( 0  <  ( cos `  A )  /\  ( sin `  A )  <  0 )  <->  ( 0  <  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
7761, 76sylibrd 234 . . . 4  |-  ( A  e.  RR  ->  (
( ( 3  x.  ( pi  /  2
) )  <  A  /\  A  <  ( 2  x.  pi ) )  ->  ( 0  < 
( cos `  A
)  /\  ( sin `  A )  <  0
) ) )
78773impib 1185 . . 3  |-  ( ( A  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  <  A  /\  A  <  ( 2  x.  pi ) )  -> 
( 0  <  ( cos `  A )  /\  ( sin `  A )  <  0 ) )
7978ancomd 451 . 2  |-  ( ( A  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  <  A  /\  A  <  ( 2  x.  pi ) )  -> 
( ( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )
8010, 79sylbi 195 1  |-  ( A  e.  ( ( 3  x.  ( pi  / 
2 ) ) (,) ( 2  x.  pi ) )  ->  (
( sin `  A
)  <  0  /\  0  <  ( cos `  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279   RR*cxr 9409    < clt 9410    - cmin 9587   -ucneg 9588    / cdiv 9985   2c2 10363   3c3 10364   4c4 10365   (,)cioo 11292   sincsin 13341   cosccos 13342   picpi 13344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ioc 11297  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-fac 12044  df-bc 12071  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156  df-ef 13345  df-sin 13347  df-cos 13348  df-pi 13350  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-fbas 17794  df-fg 17795  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-lp 18720  df-perf 18721  df-cn 18811  df-cnp 18812  df-haus 18899  df-tx 19115  df-hmeo 19308  df-fil 19399  df-fm 19491  df-flim 19492  df-flf 19493  df-xms 19875  df-ms 19876  df-tms 19877  df-cncf 20434  df-limc 21321  df-dv 21322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator