MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq3sgn Structured version   Unicode version

Theorem sincosq3sgn 21921
Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq3sgn  |-  ( A  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  A
)  <  0  /\  ( cos `  A )  <  0 ) )

Proof of Theorem sincosq3sgn
StepHypRef Expression
1 pire 21880 . . 3  |-  pi  e.  RR
2 3re 10391 . . . 4  |-  3  e.  RR
3 halfpire 21885 . . . 4  |-  ( pi 
/  2 )  e.  RR
42, 3remulcli 9396 . . 3  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
5 rexr 9425 . . . 4  |-  ( pi  e.  RR  ->  pi  e.  RR* )
6 rexr 9425 . . . 4  |-  ( ( 3  x.  ( pi 
/  2 ) )  e.  RR  ->  (
3  x.  ( pi 
/  2 ) )  e.  RR* )
7 elioo2 11337 . . . 4  |-  ( ( pi  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  ( A  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( A  e.  RR  /\  pi  <  A  /\  A  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
85, 6, 7syl2an 474 . . 3  |-  ( ( pi  e.  RR  /\  ( 3  x.  (
pi  /  2 ) )  e.  RR )  ->  ( A  e.  ( pi (,) (
3  x.  ( pi 
/  2 ) ) )  <->  ( A  e.  RR  /\  pi  <  A  /\  A  <  (
3  x.  ( pi 
/  2 ) ) ) ) )
91, 4, 8mp2an 667 . 2  |-  ( A  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( A  e.  RR  /\  pi  <  A  /\  A  <  (
3  x.  ( pi 
/  2 ) ) ) )
10 pidiv2halves 21888 . . . . . . . . 9  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
1110breq1i 4296 . . . . . . . 8  |-  ( ( ( pi  /  2
)  +  ( pi 
/  2 ) )  <  A  <->  pi  <  A )
12 ltaddsub 9809 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  A  e.  RR )  ->  ( ( ( pi 
/  2 )  +  ( pi  /  2
) )  <  A  <->  ( pi  /  2 )  <  ( A  -  ( pi  /  2
) ) ) )
133, 3, 12mp3an12 1299 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  +  ( pi  /  2 ) )  <  A  <->  ( pi  /  2 )  <  ( A  -  ( pi  /  2 ) ) ) )
1411, 13syl5bbr 259 . . . . . . 7  |-  ( A  e.  RR  ->  (
pi  <  A  <->  ( pi  /  2 )  <  ( A  -  ( pi  /  2 ) ) ) )
15 ltsubadd 9805 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  pi  e.  RR )  -> 
( ( A  -  ( pi  /  2
) )  <  pi  <->  A  <  ( pi  +  ( pi  /  2
) ) ) )
163, 1, 15mp3an23 1301 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( A  -  (
pi  /  2 ) )  <  pi  <->  A  <  ( pi  +  ( pi 
/  2 ) ) ) )
17 df-3 10377 . . . . . . . . . . 11  |-  3  =  ( 2  +  1 )
1817oveq1i 6100 . . . . . . . . . 10  |-  ( 3  x.  ( pi  / 
2 ) )  =  ( ( 2  +  1 )  x.  (
pi  /  2 ) )
19 2cn 10388 . . . . . . . . . . 11  |-  2  e.  CC
20 ax-1cn 9336 . . . . . . . . . . 11  |-  1  e.  CC
213recni 9394 . . . . . . . . . . 11  |-  ( pi 
/  2 )  e.  CC
2219, 20, 21adddiri 9393 . . . . . . . . . 10  |-  ( ( 2  +  1 )  x.  ( pi  / 
2 ) )  =  ( ( 2  x.  ( pi  /  2
) )  +  ( 1  x.  ( pi 
/  2 ) ) )
231recni 9394 . . . . . . . . . . . 12  |-  pi  e.  CC
24 2ne0 10410 . . . . . . . . . . . 12  |-  2  =/=  0
2523, 19, 24divcan2i 10070 . . . . . . . . . . 11  |-  ( 2  x.  ( pi  / 
2 ) )  =  pi
2621mulid2i 9385 . . . . . . . . . . 11  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2725, 26oveq12i 6102 . . . . . . . . . 10  |-  ( ( 2  x.  ( pi 
/  2 ) )  +  ( 1  x.  ( pi  /  2
) ) )  =  ( pi  +  ( pi  /  2 ) )
2818, 22, 273eqtrri 2466 . . . . . . . . 9  |-  ( pi  +  ( pi  / 
2 ) )  =  ( 3  x.  (
pi  /  2 ) )
2928breq2i 4297 . . . . . . . 8  |-  ( A  <  ( pi  +  ( pi  /  2
) )  <->  A  <  ( 3  x.  ( pi 
/  2 ) ) )
3016, 29syl6rbb 262 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  <  ( 3  x.  ( pi  /  2
) )  <->  ( A  -  ( pi  / 
2 ) )  < 
pi ) )
3114, 30anbi12d 705 . . . . . 6  |-  ( A  e.  RR  ->  (
( pi  <  A  /\  A  <  ( 3  x.  ( pi  / 
2 ) ) )  <-> 
( ( pi  / 
2 )  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi ) ) )
32 resubcl 9669 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( A  -  ( pi  /  2
) )  e.  RR )
333, 32mpan2 666 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  RR )
34 sincosq2sgn 21920 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( ( pi 
/  2 ) (,) pi )  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 ) )
35 rexr 9425 . . . . . . . . . . 11  |-  ( ( pi  /  2 )  e.  RR  ->  (
pi  /  2 )  e.  RR* )
36 elioo2 11337 . . . . . . . . . . 11  |-  ( ( ( pi  /  2
)  e.  RR*  /\  pi  e.  RR* )  ->  (
( A  -  (
pi  /  2 ) )  e.  ( ( pi  /  2 ) (,) pi )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  ( pi 
/  2 )  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
pi ) ) )
3735, 5, 36syl2an 474 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  RR  /\  pi  e.  RR )  -> 
( ( A  -  ( pi  /  2
) )  e.  ( ( pi  /  2
) (,) pi )  <-> 
( ( A  -  ( pi  /  2
) )  e.  RR  /\  ( pi  /  2
)  <  ( A  -  ( pi  / 
2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi ) ) )
383, 1, 37mp2an 667 . . . . . . . . 9  |-  ( ( A  -  ( pi 
/  2 ) )  e.  ( ( pi 
/  2 ) (,) pi )  <->  ( ( A  -  ( pi  /  2 ) )  e.  RR  /\  ( pi 
/  2 )  < 
( A  -  (
pi  /  2 ) )  /\  ( A  -  ( pi  / 
2 ) )  < 
pi ) )
39 ancom 448 . . . . . . . . 9  |-  ( ( 0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  /\  ( cos `  ( A  -  ( pi  /  2
) ) )  <  0 )  <->  ( ( cos `  ( A  -  ( pi  /  2
) ) )  <  0  /\  0  < 
( sin `  ( A  -  ( pi  /  2 ) ) ) ) )
4034, 38, 393imtr3i 265 . . . . . . . 8  |-  ( ( ( A  -  (
pi  /  2 ) )  e.  RR  /\  ( pi  /  2
)  <  ( A  -  ( pi  / 
2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  (
pi  /  2 ) ) ) ) )
4133, 40syl3an1 1246 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( pi  /  2
)  <  ( A  -  ( pi  / 
2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  (
pi  /  2 ) ) ) ) )
42413expib 1185 . . . . . 6  |-  ( A  e.  RR  ->  (
( ( pi  / 
2 )  <  ( A  -  ( pi  /  2 ) )  /\  ( A  -  (
pi  /  2 ) )  <  pi )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  (
pi  /  2 ) ) ) ) ) )
4331, 42sylbid 215 . . . . 5  |-  ( A  e.  RR  ->  (
( pi  <  A  /\  A  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  (
pi  /  2 ) ) ) ) ) )
4433resincld 13423 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( A  -  ( pi  /  2
) ) )  e.  RR )
4544lt0neg2d 9906 . . . . . 6  |-  ( A  e.  RR  ->  (
0  <  ( sin `  ( A  -  (
pi  /  2 ) ) )  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
4645anbi2d 698 . . . . 5  |-  ( A  e.  RR  ->  (
( ( cos `  ( A  -  ( pi  /  2 ) ) )  <  0  /\  0  <  ( sin `  ( A  -  ( pi  /  2 ) ) ) )  <->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
4743, 46sylibd 214 . . . 4  |-  ( A  e.  RR  ->  (
( pi  <  A  /\  A  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0  /\  -u ( sin `  ( A  -  ( pi  /  2 ) ) )  <  0 ) ) )
48 recn 9368 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
49 pncan3 9614 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  CC  /\  A  e.  CC )  ->  ( ( pi  / 
2 )  +  ( A  -  ( pi 
/  2 ) ) )  =  A )
5021, 48, 49sylancr 658 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( pi  /  2
)  +  ( A  -  ( pi  / 
2 ) ) )  =  A )
5150fveq2d 5692 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( sin `  A
) )
5233recnd 9408 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  ( pi  /  2 ) )  e.  CC )
53 sinhalfpip 21913 . . . . . . . 8  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
5452, 53syl 16 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
5551, 54eqtr3d 2475 . . . . . 6  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( cos `  ( A  -  ( pi  /  2 ) ) ) )
5655breq1d 4299 . . . . 5  |-  ( A  e.  RR  ->  (
( sin `  A
)  <  0  <->  ( cos `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
5750fveq2d 5692 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  =  ( cos `  A
) )
58 coshalfpip 21915 . . . . . . . 8  |-  ( ( A  -  ( pi 
/  2 ) )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
5952, 58syl 16 . . . . . . 7  |-  ( A  e.  RR  ->  ( cos `  ( ( pi 
/  2 )  +  ( A  -  (
pi  /  2 ) ) ) )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6057, 59eqtr3d 2475 . . . . . 6  |-  ( A  e.  RR  ->  ( cos `  A )  = 
-u ( sin `  ( A  -  ( pi  /  2 ) ) ) )
6160breq1d 4299 . . . . 5  |-  ( A  e.  RR  ->  (
( cos `  A
)  <  0  <->  -u ( sin `  ( A  -  (
pi  /  2 ) ) )  <  0
) )
6256, 61anbi12d 705 . . . 4  |-  ( A  e.  RR  ->  (
( ( sin `  A
)  <  0  /\  ( cos `  A )  <  0 )  <->  ( ( cos `  ( A  -  ( pi  /  2
) ) )  <  0  /\  -u ( sin `  ( A  -  ( pi  /  2
) ) )  <  0 ) ) )
6347, 62sylibrd 234 . . 3  |-  ( A  e.  RR  ->  (
( pi  <  A  /\  A  <  ( 3  x.  ( pi  / 
2 ) ) )  ->  ( ( sin `  A )  <  0  /\  ( cos `  A
)  <  0 ) ) )
64633impib 1180 . 2  |-  ( ( A  e.  RR  /\  pi  <  A  /\  A  <  ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  A
)  <  0  /\  ( cos `  A )  <  0 ) )
659, 64sylbi 195 1  |-  ( A  e.  ( pi (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( sin `  A
)  <  0  /\  ( cos `  A )  <  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283   RR*cxr 9413    < clt 9414    - cmin 9591   -ucneg 9592    / cdiv 9989   2c2 10367   3c3 10368   (,)cioo 11296   sincsin 13345   cosccos 13346   picpi 13348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301
This theorem is referenced by:  sincosq4sgn  21922
  Copyright terms: Public domain W3C validator