MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincos4thpi Structured version   Unicode version

Theorem sincos4thpi 22772
Description: The sine and cosine of  pi  /  4. (Contributed by Paul Chapman, 25-Jan-2008.)
Assertion
Ref Expression
sincos4thpi  |-  ( ( sin `  ( pi 
/  4 ) )  =  ( 1  / 
( sqr `  2
) )  /\  ( cos `  ( pi  / 
4 ) )  =  ( 1  /  ( sqr `  2 ) ) )

Proof of Theorem sincos4thpi
StepHypRef Expression
1 halfcn 10767 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
2 ax-1cn 9562 . . . . . . . . . . 11  |-  1  e.  CC
3 2halves 10779 . . . . . . . . . . 11  |-  ( 1  e.  CC  ->  (
( 1  /  2
)  +  ( 1  /  2 ) )  =  1 )
42, 3ax-mp 5 . . . . . . . . . 10  |-  ( ( 1  /  2 )  +  ( 1  / 
2 ) )  =  1
5 sincosq1eq 22771 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( ( 1  / 
2 )  +  ( 1  /  2 ) )  =  1 )  ->  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  =  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )
61, 1, 4, 5mp3an 1324 . . . . . . . . 9  |-  ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )
76oveq2i 6306 . . . . . . . 8  |-  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  x.  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )
87oveq2i 6306 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( sin `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( cos `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )
9 2cn 10618 . . . . . . . . . . . 12  |-  2  e.  CC
10 pire 22718 . . . . . . . . . . . . 13  |-  pi  e.  RR
1110recni 9620 . . . . . . . . . . . 12  |-  pi  e.  CC
12 2ne0 10640 . . . . . . . . . . . 12  |-  2  =/=  0
132, 9, 11, 9, 12, 12divmuldivi 10316 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  =  ( ( 1  x.  pi )  /  (
2  x.  2 ) )
1411mulid2i 9611 . . . . . . . . . . . 12  |-  ( 1  x.  pi )  =  pi
15 2t2e4 10697 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
1614, 15oveq12i 6307 . . . . . . . . . . 11  |-  ( ( 1  x.  pi )  /  ( 2  x.  2 ) )  =  ( pi  /  4
)
1713, 16eqtri 2496 . . . . . . . . . 10  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  =  ( pi  /  4
)
1817fveq2i 5875 . . . . . . . . 9  |-  ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( sin `  ( pi 
/  4 ) )
1918, 18oveq12i 6307 . . . . . . . 8  |-  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) )
2019oveq2i 6306 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( sin `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  ( 2  x.  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) ) )
219, 12recidi 10287 . . . . . . . . . . 11  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
2221oveq1i 6305 . . . . . . . . . 10  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  ( pi  / 
2 ) )  =  ( 1  x.  (
pi  /  2 ) )
23 2re 10617 . . . . . . . . . . . . 13  |-  2  e.  RR
2410, 23, 12redivcli 10323 . . . . . . . . . . . 12  |-  ( pi 
/  2 )  e.  RR
2524recni 9620 . . . . . . . . . . 11  |-  ( pi 
/  2 )  e.  CC
269, 1, 25mulassi 9617 . . . . . . . . . 10  |-  ( ( 2  x.  ( 1  /  2 ) )  x.  ( pi  / 
2 ) )  =  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )
2725mulid2i 9611 . . . . . . . . . 10  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2822, 26, 273eqtr3i 2504 . . . . . . . . 9  |-  ( 2  x.  ( ( 1  /  2 )  x.  ( pi  /  2
) ) )  =  ( pi  /  2
)
2928fveq2i 5875 . . . . . . . 8  |-  ( sin `  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( sin `  ( pi 
/  2 ) )
301, 25mulcli 9613 . . . . . . . . 9  |-  ( ( 1  /  2 )  x.  ( pi  / 
2 ) )  e.  CC
31 sin2t 13790 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  x.  ( pi 
/  2 ) )  e.  CC  ->  ( sin `  ( 2  x.  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) )  =  ( 2  x.  (
( sin `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) )  x.  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) ) ) ) )
3230, 31ax-mp 5 . . . . . . . 8  |-  ( sin `  ( 2  x.  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) )  =  ( 2  x.  ( ( sin `  ( ( 1  /  2 )  x.  ( pi  / 
2 ) ) )  x.  ( cos `  (
( 1  /  2
)  x.  ( pi 
/  2 ) ) ) ) )
33 sinhalfpi 22727 . . . . . . . 8  |-  ( sin `  ( pi  /  2
) )  =  1
3429, 32, 333eqtr3i 2504 . . . . . . 7  |-  ( 2  x.  ( ( sin `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  x.  ( cos `  ( ( 1  /  2 )  x.  ( pi  /  2
) ) ) ) )  =  1
358, 20, 343eqtr3i 2504 . . . . . 6  |-  ( 2  x.  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) ) )  =  1
3635fveq2i 5875 . . . . 5  |-  ( sqr `  ( 2  x.  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )  =  ( sqr `  1 )
37 4re 10624 . . . . . . . . 9  |-  4  e.  RR
38 4ne0 10644 . . . . . . . . 9  |-  4  =/=  0
3910, 37, 38redivcli 10323 . . . . . . . 8  |-  ( pi 
/  4 )  e.  RR
40 resincl 13753 . . . . . . . 8  |-  ( ( pi  /  4 )  e.  RR  ->  ( sin `  ( pi  / 
4 ) )  e.  RR )
4139, 40ax-mp 5 . . . . . . 7  |-  ( sin `  ( pi  /  4
) )  e.  RR
4241, 41remulcli 9622 . . . . . 6  |-  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) )  e.  RR
43 0le2 10638 . . . . . 6  |-  0  <_  2
4441msqge0i 10103 . . . . . 6  |-  0  <_  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) )
4523, 42, 43, 44sqrtmulii 13199 . . . . 5  |-  ( sqr `  ( 2  x.  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )
46 sqrt1 13085 . . . . 5  |-  ( sqr `  1 )  =  1
4736, 45, 463eqtr3ri 2505 . . . 4  |-  1  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) )
4842sqrtcli 13184 . . . . . . 7  |-  ( 0  <_  ( ( sin `  ( pi  /  4
) )  x.  ( sin `  ( pi  / 
4 ) ) )  ->  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  RR )
4944, 48ax-mp 5 . . . . . 6  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  RR
5049recni 9620 . . . . 5  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  e.  CC
51 sqrt2re 13861 . . . . . . 7  |-  ( sqr `  2 )  e.  RR
5251recni 9620 . . . . . 6  |-  ( sqr `  2 )  e.  CC
53 sqrt00 13077 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  0  <_  2 )  -> 
( ( sqr `  2
)  =  0  <->  2  =  0 ) )
5423, 43, 53mp2an 672 . . . . . . . 8  |-  ( ( sqr `  2 )  =  0  <->  2  = 
0 )
5554necon3bii 2735 . . . . . . 7  |-  ( ( sqr `  2 )  =/=  0  <->  2  =/=  0 )
5612, 55mpbir 209 . . . . . 6  |-  ( sqr `  2 )  =/=  0
5752, 56pm3.2i 455 . . . . 5  |-  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 )  =/=  0 )
58 divmul2 10223 . . . . 5  |-  ( ( 1  e.  CC  /\  ( sqr `  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) ) )  e.  CC  /\  ( ( sqr `  2 )  e.  CC  /\  ( sqr `  2 )  =/=  0 ) )  -> 
( ( 1  / 
( sqr `  2
) )  =  ( sqr `  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) ) )  <->  1  =  ( ( sqr `  2
)  x.  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) ) ) )
592, 50, 57, 58mp3an 1324 . . . 4  |-  ( ( 1  /  ( sqr `  2 ) )  =  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  <->  1  =  ( ( sqr `  2 )  x.  ( sqr `  (
( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) ) ) )
6047, 59mpbir 209 . . 3  |-  ( 1  /  ( sqr `  2
) )  =  ( sqr `  ( ( sin `  ( pi 
/  4 ) )  x.  ( sin `  (
pi  /  4 ) ) ) )
61 0re 9608 . . . . 5  |-  0  e.  RR
62 pipos 22720 . . . . . . . 8  |-  0  <  pi
63 4pos 10643 . . . . . . . 8  |-  0  <  4
6410, 37, 62, 63divgt0ii 10475 . . . . . . 7  |-  0  <  ( pi  /  4
)
65 1re 9607 . . . . . . . 8  |-  1  e.  RR
66 pigt2lt4 22716 . . . . . . . . . . 11  |-  ( 2  <  pi  /\  pi  <  4 )
6766simpri 462 . . . . . . . . . 10  |-  pi  <  4
6810, 37, 37, 63ltdiv1ii 10487 . . . . . . . . . 10  |-  ( pi 
<  4  <->  ( pi  /  4 )  <  (
4  /  4 ) )
6967, 68mpbi 208 . . . . . . . . 9  |-  ( pi 
/  4 )  < 
( 4  /  4
)
7037recni 9620 . . . . . . . . . 10  |-  4  e.  CC
7170, 38dividi 10289 . . . . . . . . 9  |-  ( 4  /  4 )  =  1
7269, 71breqtri 4476 . . . . . . . 8  |-  ( pi 
/  4 )  <  1
7339, 65, 72ltleii 9719 . . . . . . 7  |-  ( pi 
/  4 )  <_ 
1
74 0xr 9652 . . . . . . . 8  |-  0  e.  RR*
75 elioc2 11599 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( pi  /  4
)  e.  ( 0 (,] 1 )  <->  ( (
pi  /  4 )  e.  RR  /\  0  <  ( pi  /  4
)  /\  ( pi  /  4 )  <_  1
) ) )
7674, 65, 75mp2an 672 . . . . . . 7  |-  ( ( pi  /  4 )  e.  ( 0 (,] 1 )  <->  ( (
pi  /  4 )  e.  RR  /\  0  <  ( pi  /  4
)  /\  ( pi  /  4 )  <_  1
) )
7739, 64, 73, 76mpbir3an 1178 . . . . . 6  |-  ( pi 
/  4 )  e.  ( 0 (,] 1
)
78 sin01gt0 13803 . . . . . 6  |-  ( ( pi  /  4 )  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  (
pi  /  4 ) ) )
7977, 78ax-mp 5 . . . . 5  |-  0  <  ( sin `  (
pi  /  4 ) )
8061, 41, 79ltleii 9719 . . . 4  |-  0  <_  ( sin `  (
pi  /  4 ) )
8141sqrtmsqi 13186 . . . 4  |-  ( 0  <_  ( sin `  (
pi  /  4 ) )  ->  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  =  ( sin `  (
pi  /  4 ) ) )
8280, 81ax-mp 5 . . 3  |-  ( sqr `  ( ( sin `  (
pi  /  4 ) )  x.  ( sin `  ( pi  /  4
) ) ) )  =  ( sin `  (
pi  /  4 ) )
8360, 82eqtr2i 2497 . 2  |-  ( sin `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
8460, 82eqtri 2496 . . 3  |-  ( 1  /  ( sqr `  2
) )  =  ( sin `  ( pi 
/  4 ) )
8517fveq2i 5875 . . . 4  |-  ( cos `  ( ( 1  / 
2 )  x.  (
pi  /  2 ) ) )  =  ( cos `  ( pi 
/  4 ) )
866, 18, 853eqtr3i 2504 . . 3  |-  ( sin `  ( pi  /  4
) )  =  ( cos `  ( pi 
/  4 ) )
8784, 86eqtr2i 2497 . 2  |-  ( cos `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
8883, 87pm3.2i 455 1  |-  ( ( sin `  ( pi 
/  4 ) )  =  ( 1  / 
( sqr `  2
) )  /\  ( cos `  ( pi  / 
4 ) )  =  ( 1  /  ( sqr `  2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509   RR*cxr 9639    < clt 9640    <_ cle 9641    / cdiv 10218   2c2 10597   4c4 10599   (,]cioc 11542   sqrcsqrt 13046   sincsin 13678   cosccos 13679   picpi 13681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ioc 11546  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-shft 12880  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292  df-sum 13489  df-ef 13682  df-sin 13684  df-cos 13685  df-pi 13687  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-fbas 18286  df-fg 18287  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-lp 19505  df-perf 19506  df-cn 19596  df-cnp 19597  df-haus 19684  df-tx 19931  df-hmeo 20124  df-fil 20215  df-fm 20307  df-flim 20308  df-flf 20309  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-limc 22138  df-dv 22139
This theorem is referenced by:  tan4thpi  22773
  Copyright terms: Public domain W3C validator