MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincn Structured version   Unicode version

Theorem sincn 22045
Description: Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
sincn  |-  sin  e.  ( CC -cn-> CC )

Proof of Theorem sincn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sin 13476 . 2  |-  sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
2 eqid 2454 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
32subcn 20577 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
43a1i 11 . . . . . . . 8  |-  ( T. 
->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
5 efcn 22044 . . . . . . . . . 10  |-  exp  e.  ( CC -cn-> CC )
65a1i 11 . . . . . . . . 9  |-  ( T. 
->  exp  e.  ( CC
-cn-> CC ) )
7 ax-icn 9455 . . . . . . . . . 10  |-  _i  e.  CC
8 eqid 2454 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( _i  x.  x ) )  =  ( x  e.  CC  |->  ( _i  x.  x ) )
98mulc1cncf 20616 . . . . . . . . . 10  |-  ( _i  e.  CC  ->  (
x  e.  CC  |->  ( _i  x.  x ) )  e.  ( CC
-cn-> CC ) )
107, 9mp1i 12 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  CC  |->  ( _i  x.  x
) )  e.  ( CC -cn-> CC ) )
116, 10cncfmpt1f 20624 . . . . . . . 8  |-  ( T. 
->  ( x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) )  e.  ( CC
-cn-> CC ) )
12 negicn 9725 . . . . . . . . . 10  |-  -u _i  e.  CC
13 eqid 2454 . . . . . . . . . . 11  |-  ( x  e.  CC  |->  ( -u _i  x.  x ) )  =  ( x  e.  CC  |->  ( -u _i  x.  x ) )
1413mulc1cncf 20616 . . . . . . . . . 10  |-  ( -u _i  e.  CC  ->  (
x  e.  CC  |->  (
-u _i  x.  x
) )  e.  ( CC -cn-> CC ) )
1512, 14mp1i 12 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  CC  |->  ( -u _i  x.  x
) )  e.  ( CC -cn-> CC ) )
166, 15cncfmpt1f 20624 . . . . . . . 8  |-  ( T. 
->  ( x  e.  CC  |->  ( exp `  ( -u _i  x.  x ) ) )  e.  ( CC
-cn-> CC ) )
172, 4, 11, 16cncfmpt2f 20625 . . . . . . 7  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  e.  ( CC
-cn-> CC ) )
18 cncff 20604 . . . . . . 7  |-  ( ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  e.  ( CC
-cn-> CC )  ->  (
x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
1917, 18syl 16 . . . . . 6  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
20 eqid 2454 . . . . . . 7  |-  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )
2120fmpt 5976 . . . . . 6  |-  ( A. x  e.  CC  (
( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC  <->  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) ) ) : CC --> CC )
2219, 21sylibr 212 . . . . 5  |-  ( T. 
->  A. x  e.  CC  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  e.  CC )
23 eqidd 2455 . . . . 5  |-  ( T. 
->  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) ) )
24 eqidd 2455 . . . . 5  |-  ( T. 
->  ( y  e.  CC  |->  ( y  /  (
2  x.  _i ) ) )  =  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) ) )
25 oveq1 6210 . . . . 5  |-  ( y  =  ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  ->  ( y  / 
( 2  x.  _i ) )  =  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
2622, 23, 24, 25fmptcof 5989 . . . 4  |-  ( T. 
->  ( ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )  o.  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) )  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) ) )
27 2mulicn 10662 . . . . . . 7  |-  ( 2  x.  _i )  e.  CC
28 2muline0 10663 . . . . . . 7  |-  ( 2  x.  _i )  =/=  0
29 eqid 2454 . . . . . . . 8  |-  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) )  =  ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )
3029divccncf 20617 . . . . . . 7  |-  ( ( ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i )  =/=  0 )  -> 
( y  e.  CC  |->  ( y  /  (
2  x.  _i ) ) )  e.  ( CC -cn-> CC ) )
3127, 28, 30mp2an 672 . . . . . 6  |-  ( y  e.  CC  |->  ( y  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC )
3231a1i 11 . . . . 5  |-  ( T. 
->  ( y  e.  CC  |->  ( y  /  (
2  x.  _i ) ) )  e.  ( CC -cn-> CC ) )
3317, 32cncfco 20618 . . . 4  |-  ( T. 
->  ( ( y  e.  CC  |->  ( y  / 
( 2  x.  _i ) ) )  o.  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) ) ) )  e.  ( CC -cn-> CC ) )
3426, 33eqeltrrd 2543 . . 3  |-  ( T. 
->  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x
) )  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC ) )
3534trud 1379 . 2  |-  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )  e.  ( CC -cn-> CC )
361, 35eqeltri 2538 1  |-  sin  e.  ( CC -cn-> CC )
Colors of variables: wff setvar class
Syntax hints:   T. wtru 1371    e. wcel 1758    =/= wne 2648   A.wral 2799    |-> cmpt 4461    o. ccom 4955   -->wf 5525   ` cfv 5529  (class class class)co 6203   CCcc 9394   0cc0 9396   _ici 9398    x. cmul 9401    - cmin 9709   -ucneg 9710    / cdiv 10107   2c2 10485   expce 13468   sincsin 13470   TopOpenctopn 14482  ℂfldccnfld 17946    Cn ccn 18963    tX ctx 19268   -cn->ccncf 20587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475  ax-mulf 9476
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7775  df-sup 7805  df-oi 7838  df-card 8223  df-cda 8451  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-4 10496  df-5 10497  df-6 10498  df-7 10499  df-8 10500  df-9 10501  df-10 10502  df-n0 10694  df-z 10761  df-dec 10870  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-ico 11420  df-icc 11421  df-fz 11558  df-fzo 11669  df-fl 11762  df-seq 11927  df-exp 11986  df-fac 12172  df-bc 12199  df-hash 12224  df-shft 12677  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-limsup 13070  df-clim 13087  df-rlim 13088  df-sum 13285  df-ef 13474  df-sin 13476  df-struct 14297  df-ndx 14298  df-slot 14299  df-base 14300  df-sets 14301  df-ress 14302  df-plusg 14373  df-mulr 14374  df-starv 14375  df-sca 14376  df-vsca 14377  df-ip 14378  df-tset 14379  df-ple 14380  df-ds 14382  df-unif 14383  df-hom 14384  df-cco 14385  df-rest 14483  df-topn 14484  df-0g 14502  df-gsum 14503  df-topgen 14504  df-pt 14505  df-prds 14508  df-xrs 14562  df-qtop 14567  df-imas 14568  df-xps 14570  df-mre 14646  df-mrc 14647  df-acs 14649  df-mnd 15537  df-submnd 15587  df-mulg 15670  df-cntz 15957  df-cmn 16403  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-fbas 17942  df-fg 17943  df-cnfld 17947  df-top 18638  df-bases 18640  df-topon 18641  df-topsp 18642  df-cld 18758  df-ntr 18759  df-cls 18760  df-nei 18837  df-lp 18875  df-perf 18876  df-cn 18966  df-cnp 18967  df-haus 19054  df-tx 19270  df-hmeo 19463  df-fil 19554  df-fm 19646  df-flim 19647  df-flf 19648  df-xms 20030  df-ms 20031  df-tms 20032  df-cncf 20589  df-limc 21477  df-dv 21478
This theorem is referenced by:  pilem3  22054  itgsin0pilem1  29958  ibliccsinexp  29959  itgsinexplem1  29962  itgsinexp  29963
  Copyright terms: Public domain W3C validator