Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinccvglem Structured version   Visualization version   Unicode version

Theorem sinccvglem 30388
Description:  ( ( sin `  x
)  /  x )  ~~>  1 as (real)  x  ~~>  0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
sinccvg.1  |-  ( ph  ->  F : NN --> ( RR 
\  { 0 } ) )
sinccvg.2  |-  ( ph  ->  F  ~~>  0 )
sinccvg.3  |-  G  =  ( x  e.  ( RR  \  { 0 } )  |->  ( ( sin `  x )  /  x ) )
sinccvg.4  |-  H  =  ( x  e.  CC  |->  ( 1  -  (
( x ^ 2 )  /  3 ) ) )
sinccvg.5  |-  ( ph  ->  M  e.  NN )
sinccvg.6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  <  1
)
Assertion
Ref Expression
sinccvglem  |-  ( ph  ->  ( G  o.  F
)  ~~>  1 )
Distinct variable groups:    x, k, F    k, H    k, M    ph, k    k, G
Allowed substitution hints:    ph( x)    G( x)    H( x)    M( x)

Proof of Theorem sinccvglem
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2471 . 2  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 sinccvg.5 . . 3  |-  ( ph  ->  M  e.  NN )
32nnzd 11062 . 2  |-  ( ph  ->  M  e.  ZZ )
4 sinccvg.2 . . . 4  |-  ( ph  ->  F  ~~>  0 )
5 sinccvg.4 . . . . . 6  |-  H  =  ( x  e.  CC  |->  ( 1  -  (
( x ^ 2 )  /  3 ) ) )
65funmpt2 5626 . . . . 5  |-  Fun  H
7 sinccvg.1 . . . . . 6  |-  ( ph  ->  F : NN --> ( RR 
\  { 0 } ) )
8 nnex 10637 . . . . . 6  |-  NN  e.  _V
9 fex 6155 . . . . . 6  |-  ( ( F : NN --> ( RR 
\  { 0 } )  /\  NN  e.  _V )  ->  F  e. 
_V )
107, 8, 9sylancl 675 . . . . 5  |-  ( ph  ->  F  e.  _V )
11 cofunexg 6776 . . . . 5  |-  ( ( Fun  H  /\  F  e.  _V )  ->  ( H  o.  F )  e.  _V )
126, 10, 11sylancr 676 . . . 4  |-  ( ph  ->  ( H  o.  F
)  e.  _V )
137adantr 472 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  F : NN
--> ( RR  \  {
0 } ) )
14 eluznn 11252 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN )
152, 14sylan 479 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN )
1613, 15ffvelrnd 6038 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  ( RR  \  { 0 } ) )
17 eldifsn 4088 . . . . . . 7  |-  ( ( F `  k )  e.  ( RR  \  { 0 } )  <-> 
( ( F `  k )  e.  RR  /\  ( F `  k
)  =/=  0 ) )
1816, 17sylib 201 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  e.  RR  /\  ( F `
 k )  =/=  0 ) )
1918simpld 466 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
2019recnd 9687 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
21 ax-1cn 9615 . . . . . 6  |-  1  e.  CC
22 sqcl 12375 . . . . . . 7  |-  ( x  e.  CC  ->  (
x ^ 2 )  e.  CC )
23 3cn 10706 . . . . . . . 8  |-  3  e.  CC
24 3ne0 10726 . . . . . . . 8  |-  3  =/=  0
25 divcl 10298 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( x ^ 2 )  /  3 )  e.  CC )
2623, 24, 25mp3an23 1382 . . . . . . 7  |-  ( ( x ^ 2 )  e.  CC  ->  (
( x ^ 2 )  /  3 )  e.  CC )
2722, 26syl 17 . . . . . 6  |-  ( x  e.  CC  ->  (
( x ^ 2 )  /  3 )  e.  CC )
28 subcl 9894 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( ( x ^
2 )  /  3
)  e.  CC )  ->  ( 1  -  ( ( x ^
2 )  /  3
) )  e.  CC )
2921, 27, 28sylancr 676 . . . . 5  |-  ( x  e.  CC  ->  (
1  -  ( ( x ^ 2 )  /  3 ) )  e.  CC )
305, 29fmpti 6060 . . . 4  |-  H : CC
--> CC
31 eqid 2471 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
3231cnfldtopon 21881 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3332a1i 11 . . . . . . . 8  |-  ( T. 
->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
34 1cnd 9677 . . . . . . . . 9  |-  ( T. 
->  1  e.  CC )
3533, 33, 34cnmptc 20754 . . . . . . . 8  |-  ( T. 
->  ( x  e.  CC  |->  1 )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
3631sqcn 21984 . . . . . . . . . 10  |-  ( x  e.  CC  |->  ( x ^ 2 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) )
3736a1i 11 . . . . . . . . 9  |-  ( T. 
->  ( x  e.  CC  |->  ( x ^ 2 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
3831divccn 21983 . . . . . . . . . . 11  |-  ( ( 3  e.  CC  /\  3  =/=  0 )  -> 
( y  e.  CC  |->  ( y  /  3
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
3923, 24, 38mp2an 686 . . . . . . . . . 10  |-  ( y  e.  CC  |->  ( y  /  3 ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) )
4039a1i 11 . . . . . . . . 9  |-  ( T. 
->  ( y  e.  CC  |->  ( y  /  3
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
41 oveq1 6315 . . . . . . . . 9  |-  ( y  =  ( x ^
2 )  ->  (
y  /  3 )  =  ( ( x ^ 2 )  / 
3 ) )
4233, 37, 33, 40, 41cnmpt11 20755 . . . . . . . 8  |-  ( T. 
->  ( x  e.  CC  |->  ( ( x ^
2 )  /  3
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
4331subcn 21976 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
4443a1i 11 . . . . . . . 8  |-  ( T. 
->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
4533, 35, 42, 44cnmpt12f 20758 . . . . . . 7  |-  ( T. 
->  ( x  e.  CC  |->  ( 1  -  (
( x ^ 2 )  /  3 ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
4645trud 1461 . . . . . 6  |-  ( x  e.  CC  |->  ( 1  -  ( ( x ^ 2 )  / 
3 ) ) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen ` fld ) )
4731cncfcn1 22020 . . . . . 6  |-  ( CC
-cn-> CC )  =  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )
4846, 5, 473eltr4i 2562 . . . . 5  |-  H  e.  ( CC -cn-> CC )
49 cncfi 22004 . . . . 5  |-  ( ( H  e.  ( CC
-cn-> CC )  /\  0  e.  CC  /\  y  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  CC  ( ( abs `  ( w  -  0 ) )  <  z  ->  ( abs `  (
( H `  w
)  -  ( H `
 0 ) ) )  <  y ) )
5048, 49mp3an1 1377 . . . 4  |-  ( ( 0  e.  CC  /\  y  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  CC  ( ( abs `  ( w  -  0 ) )  <  z  ->  ( abs `  (
( H `  w
)  -  ( H `
 0 ) ) )  <  y ) )
51 fvco3 5957 . . . . . 6  |-  ( ( F : NN --> ( RR 
\  { 0 } )  /\  k  e.  NN )  ->  (
( H  o.  F
) `  k )  =  ( H `  ( F `  k ) ) )
527, 51sylan 479 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( H  o.  F ) `
 k )  =  ( H `  ( F `  k )
) )
5315, 52syldan 478 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( H  o.  F ) `  k )  =  ( H `  ( F `
 k ) ) )
541, 4, 12, 3, 20, 30, 50, 53climcn1lem 13743 . . 3  |-  ( ph  ->  ( H  o.  F
)  ~~>  ( H ` 
0 ) )
55 0cn 9653 . . . 4  |-  0  e.  CC
56 sq0i 12405 . . . . . . . . 9  |-  ( x  =  0  ->  (
x ^ 2 )  =  0 )
5756oveq1d 6323 . . . . . . . 8  |-  ( x  =  0  ->  (
( x ^ 2 )  /  3 )  =  ( 0  / 
3 ) )
5823, 24div0i 10363 . . . . . . . 8  |-  ( 0  /  3 )  =  0
5957, 58syl6eq 2521 . . . . . . 7  |-  ( x  =  0  ->  (
( x ^ 2 )  /  3 )  =  0 )
6059oveq2d 6324 . . . . . 6  |-  ( x  =  0  ->  (
1  -  ( ( x ^ 2 )  /  3 ) )  =  ( 1  -  0 ) )
61 1m0e1 10742 . . . . . 6  |-  ( 1  -  0 )  =  1
6260, 61syl6eq 2521 . . . . 5  |-  ( x  =  0  ->  (
1  -  ( ( x ^ 2 )  /  3 ) )  =  1 )
63 1ex 9656 . . . . 5  |-  1  e.  _V
6462, 5, 63fvmpt 5963 . . . 4  |-  ( 0  e.  CC  ->  ( H `  0 )  =  1 )
6555, 64ax-mp 5 . . 3  |-  ( H `
 0 )  =  1
6654, 65syl6breq 4435 . 2  |-  ( ph  ->  ( H  o.  F
)  ~~>  1 )
67 sinccvg.3 . . . 4  |-  G  =  ( x  e.  ( RR  \  { 0 } )  |->  ( ( sin `  x )  /  x ) )
6867funmpt2 5626 . . 3  |-  Fun  G
69 cofunexg 6776 . . 3  |-  ( ( Fun  G  /\  F  e.  _V )  ->  ( G  o.  F )  e.  _V )
7068, 10, 69sylancr 676 . 2  |-  ( ph  ->  ( G  o.  F
)  e.  _V )
71 oveq1 6315 . . . . . . . 8  |-  ( x  =  ( F `  k )  ->  (
x ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
7271oveq1d 6323 . . . . . . 7  |-  ( x  =  ( F `  k )  ->  (
( x ^ 2 )  /  3 )  =  ( ( ( F `  k ) ^ 2 )  / 
3 ) )
7372oveq2d 6324 . . . . . 6  |-  ( x  =  ( F `  k )  ->  (
1  -  ( ( x ^ 2 )  /  3 ) )  =  ( 1  -  ( ( ( F `
 k ) ^
2 )  /  3
) ) )
74 ovex 6336 . . . . . 6  |-  ( 1  -  ( ( ( F `  k ) ^ 2 )  / 
3 ) )  e. 
_V
7573, 5, 74fvmpt 5963 . . . . 5  |-  ( ( F `  k )  e.  CC  ->  ( H `  ( F `  k ) )  =  ( 1  -  (
( ( F `  k ) ^ 2 )  /  3 ) ) )
7620, 75syl 17 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  ( F `  k
) )  =  ( 1  -  ( ( ( F `  k
) ^ 2 )  /  3 ) ) )
7753, 76eqtrd 2505 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( H  o.  F ) `  k )  =  ( 1  -  ( ( ( F `  k
) ^ 2 )  /  3 ) ) )
78 1re 9660 . . . 4  |-  1  e.  RR
7919resqcld 12480 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k ) ^ 2 )  e.  RR )
80 3nn 10791 . . . . 5  |-  3  e.  NN
81 nndivre 10667 . . . . 5  |-  ( ( ( ( F `  k ) ^ 2 )  e.  RR  /\  3  e.  NN )  ->  ( ( ( F `
 k ) ^
2 )  /  3
)  e.  RR )
8279, 80, 81sylancl 675 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( F `  k
) ^ 2 )  /  3 )  e.  RR )
83 resubcl 9958 . . . 4  |-  ( ( 1  e.  RR  /\  ( ( ( F `
 k ) ^
2 )  /  3
)  e.  RR )  ->  ( 1  -  ( ( ( F `
 k ) ^
2 )  /  3
) )  e.  RR )
8478, 82, 83sylancr 676 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 1  -  ( ( ( F `  k ) ^ 2 )  / 
3 ) )  e.  RR )
8577, 84eqeltrd 2549 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( H  o.  F ) `  k )  e.  RR )
86 fvco3 5957 . . . . . 6  |-  ( ( F : NN --> ( RR 
\  { 0 } )  /\  k  e.  NN )  ->  (
( G  o.  F
) `  k )  =  ( G `  ( F `  k ) ) )
877, 86sylan 479 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( G  o.  F ) `
 k )  =  ( G `  ( F `  k )
) )
8815, 87syldan 478 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( G  o.  F ) `  k )  =  ( G `  ( F `
 k ) ) )
89 fveq2 5879 . . . . . . 7  |-  ( x  =  ( F `  k )  ->  ( sin `  x )  =  ( sin `  ( F `  k )
) )
90 id 22 . . . . . . 7  |-  ( x  =  ( F `  k )  ->  x  =  ( F `  k ) )
9189, 90oveq12d 6326 . . . . . 6  |-  ( x  =  ( F `  k )  ->  (
( sin `  x
)  /  x )  =  ( ( sin `  ( F `  k
) )  /  ( F `  k )
) )
92 ovex 6336 . . . . . 6  |-  ( ( sin `  ( F `
 k ) )  /  ( F `  k ) )  e. 
_V
9391, 67, 92fvmpt 5963 . . . . 5  |-  ( ( F `  k )  e.  ( RR  \  { 0 } )  ->  ( G `  ( F `  k ) )  =  ( ( sin `  ( F `
 k ) )  /  ( F `  k ) ) )
9416, 93syl 17 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  ( F `  k
) )  =  ( ( sin `  ( F `  k )
)  /  ( F `
 k ) ) )
9588, 94eqtrd 2505 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( G  o.  F ) `  k )  =  ( ( sin `  ( F `  k )
)  /  ( F `
 k ) ) )
9619resincld 14274 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( sin `  ( F `  k
) )  e.  RR )
9718simprd 470 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =/=  0
)
9896, 19, 97redivcld 10457 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( sin `  ( F `  k ) )  / 
( F `  k
) )  e.  RR )
9995, 98eqeltrd 2549 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( G  o.  F ) `  k )  e.  RR )
100 1cnd 9677 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  1  e.  CC )
10182recnd 9687 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( F `  k
) ^ 2 )  /  3 )  e.  CC )
10220abscld 13575 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR )
103102recnd 9687 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  CC )
104100, 101, 103subdird 10096 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
1  -  ( ( ( F `  k
) ^ 2 )  /  3 ) )  x.  ( abs `  ( F `  k )
) )  =  ( ( 1  x.  ( abs `  ( F `  k ) ) )  -  ( ( ( ( F `  k
) ^ 2 )  /  3 )  x.  ( abs `  ( F `  k )
) ) ) )
105103mulid2d 9679 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 1  x.  ( abs `  ( F `  k )
) )  =  ( abs `  ( F `
 k ) ) )
106 df-3 10691 . . . . . . . . . . . . 13  |-  3  =  ( 2  +  1 )
107106oveq2i 6319 . . . . . . . . . . . 12  |-  ( ( abs `  ( F `
 k ) ) ^ 3 )  =  ( ( abs `  ( F `  k )
) ^ ( 2  +  1 ) )
108 2nn0 10910 . . . . . . . . . . . . . 14  |-  2  e.  NN0
109 expp1 12317 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( F `  k )
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( abs `  ( F `  k )
) ^ ( 2  +  1 ) )  =  ( ( ( abs `  ( F `
 k ) ) ^ 2 )  x.  ( abs `  ( F `  k )
) ) )
110103, 108, 109sylancl 675 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) ) ^
( 2  +  1 ) )  =  ( ( ( abs `  ( F `  k )
) ^ 2 )  x.  ( abs `  ( F `  k )
) ) )
111 absresq 13442 . . . . . . . . . . . . . . 15  |-  ( ( F `  k )  e.  RR  ->  (
( abs `  ( F `  k )
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
11219, 111syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) ) ^
2 )  =  ( ( F `  k
) ^ 2 ) )
113112oveq1d 6323 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( abs `  ( F `  k )
) ^ 2 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( F `  k ) ^ 2 )  x.  ( abs `  ( F `  k
) ) ) )
114110, 113eqtrd 2505 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) ) ^
( 2  +  1 ) )  =  ( ( ( F `  k ) ^ 2 )  x.  ( abs `  ( F `  k
) ) ) )
115107, 114syl5eq 2517 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) ) ^
3 )  =  ( ( ( F `  k ) ^ 2 )  x.  ( abs `  ( F `  k
) ) ) )
116115oveq1d 6323 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( abs `  ( F `  k )
) ^ 3 )  /  3 )  =  ( ( ( ( F `  k ) ^ 2 )  x.  ( abs `  ( F `  k )
) )  /  3
) )
11779recnd 9687 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k ) ^ 2 )  e.  CC )
11823a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  3  e.  CC )
11924a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  3  =/=  0 )
120117, 103, 118, 119div23d 10442 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( ( F `  k ) ^ 2 )  x.  ( abs `  ( F `  k
) ) )  / 
3 )  =  ( ( ( ( F `
 k ) ^
2 )  /  3
)  x.  ( abs `  ( F `  k
) ) ) )
121116, 120eqtr2d 2506 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( ( F `  k ) ^ 2 )  /  3 )  x.  ( abs `  ( F `  k )
) )  =  ( ( ( abs `  ( F `  k )
) ^ 3 )  /  3 ) )
122105, 121oveq12d 6326 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
1  x.  ( abs `  ( F `  k
) ) )  -  ( ( ( ( F `  k ) ^ 2 )  / 
3 )  x.  ( abs `  ( F `  k ) ) ) )  =  ( ( abs `  ( F `
 k ) )  -  ( ( ( abs `  ( F `
 k ) ) ^ 3 )  / 
3 ) ) )
123104, 122eqtrd 2505 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
1  -  ( ( ( F `  k
) ^ 2 )  /  3 ) )  x.  ( abs `  ( F `  k )
) )  =  ( ( abs `  ( F `  k )
)  -  ( ( ( abs `  ( F `  k )
) ^ 3 )  /  3 ) ) )
12420, 97absrpcld 13587 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  RR+ )
125124rpgt0d 11367 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  0  <  ( abs `  ( F `
 k ) ) )
126 sinccvg.6 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  <  1
)
127 ltle 9740 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( F `  k )
)  <  1  ->  ( abs `  ( F `
 k ) )  <_  1 ) )
128102, 78, 127sylancl 675 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  <  1  ->  ( abs `  ( F `  k
) )  <_  1
) )
129126, 128mpd 15 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  <_  1
)
130 0xr 9705 . . . . . . . . . . 11  |-  0  e.  RR*
131 elioc2 11722 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
( abs `  ( F `  k )
)  e.  ( 0 (,] 1 )  <->  ( ( abs `  ( F `  k ) )  e.  RR  /\  0  < 
( abs `  ( F `  k )
)  /\  ( abs `  ( F `  k
) )  <_  1
) ) )
132130, 78, 131mp2an 686 . . . . . . . . . 10  |-  ( ( abs `  ( F `
 k ) )  e.  ( 0 (,] 1 )  <->  ( ( abs `  ( F `  k ) )  e.  RR  /\  0  < 
( abs `  ( F `  k )
)  /\  ( abs `  ( F `  k
) )  <_  1
) )
133102, 125, 129, 132syl3anbrc 1214 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( abs `  ( F `  k
) )  e.  ( 0 (,] 1 ) )
134 sin01bnd 14316 . . . . . . . . 9  |-  ( ( abs `  ( F `
 k ) )  e.  ( 0 (,] 1 )  ->  (
( ( abs `  ( F `  k )
)  -  ( ( ( abs `  ( F `  k )
) ^ 3 )  /  3 ) )  <  ( sin `  ( abs `  ( F `  k ) ) )  /\  ( sin `  ( abs `  ( F `  k ) ) )  <  ( abs `  ( F `  k )
) ) )
135133, 134syl 17 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( abs `  ( F `  k )
)  -  ( ( ( abs `  ( F `  k )
) ^ 3 )  /  3 ) )  <  ( sin `  ( abs `  ( F `  k ) ) )  /\  ( sin `  ( abs `  ( F `  k ) ) )  <  ( abs `  ( F `  k )
) ) )
136135simpld 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  -  ( ( ( abs `  ( F `  k
) ) ^ 3 )  /  3 ) )  <  ( sin `  ( abs `  ( F `  k )
) ) )
137123, 136eqbrtrd 4416 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
1  -  ( ( ( F `  k
) ^ 2 )  /  3 ) )  x.  ( abs `  ( F `  k )
) )  <  ( sin `  ( abs `  ( F `  k )
) ) )
138102resincld 14274 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( sin `  ( abs `  ( F `  k )
) )  e.  RR )
13984, 138, 124ltmuldivd 11408 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( 1  -  (
( ( F `  k ) ^ 2 )  /  3 ) )  x.  ( abs `  ( F `  k
) ) )  < 
( sin `  ( abs `  ( F `  k ) ) )  <-> 
( 1  -  (
( ( F `  k ) ^ 2 )  /  3 ) )  <  ( ( sin `  ( abs `  ( F `  k
) ) )  / 
( abs `  ( F `  k )
) ) ) )
140137, 139mpbid 215 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 1  -  ( ( ( F `  k ) ^ 2 )  / 
3 ) )  < 
( ( sin `  ( abs `  ( F `  k ) ) )  /  ( abs `  ( F `  k )
) ) )
141 fveq2 5879 . . . . . . . 8  |-  ( ( abs `  ( F `
 k ) )  =  ( F `  k )  ->  ( sin `  ( abs `  ( F `  k )
) )  =  ( sin `  ( F `
 k ) ) )
142 id 22 . . . . . . . 8  |-  ( ( abs `  ( F `
 k ) )  =  ( F `  k )  ->  ( abs `  ( F `  k ) )  =  ( F `  k
) )
143141, 142oveq12d 6326 . . . . . . 7  |-  ( ( abs `  ( F `
 k ) )  =  ( F `  k )  ->  (
( sin `  ( abs `  ( F `  k ) ) )  /  ( abs `  ( F `  k )
) )  =  ( ( sin `  ( F `  k )
)  /  ( F `
 k ) ) )
144143a1i 11 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  =  ( F `  k
)  ->  ( ( sin `  ( abs `  ( F `  k )
) )  /  ( abs `  ( F `  k ) ) )  =  ( ( sin `  ( F `  k
) )  /  ( F `  k )
) ) )
145 sinneg 14277 . . . . . . . . . 10  |-  ( ( F `  k )  e.  CC  ->  ( sin `  -u ( F `  k ) )  = 
-u ( sin `  ( F `  k )
) )
14620, 145syl 17 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( sin `  -u ( F `  k
) )  =  -u ( sin `  ( F `
 k ) ) )
147146oveq1d 6323 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( sin `  -u ( F `  k ) )  /  -u ( F `  k
) )  =  (
-u ( sin `  ( F `  k )
)  /  -u ( F `  k )
) )
14896recnd 9687 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( sin `  ( F `  k
) )  e.  CC )
149148, 20, 97div2negd 10420 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( -u ( sin `  ( F `  k ) )  /  -u ( F `  k
) )  =  ( ( sin `  ( F `  k )
)  /  ( F `
 k ) ) )
150147, 149eqtrd 2505 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( sin `  -u ( F `  k ) )  /  -u ( F `  k
) )  =  ( ( sin `  ( F `  k )
)  /  ( F `
 k ) ) )
151 fveq2 5879 . . . . . . . . 9  |-  ( ( abs `  ( F `
 k ) )  =  -u ( F `  k )  ->  ( sin `  ( abs `  ( F `  k )
) )  =  ( sin `  -u ( F `  k )
) )
152 id 22 . . . . . . . . 9  |-  ( ( abs `  ( F `
 k ) )  =  -u ( F `  k )  ->  ( abs `  ( F `  k ) )  = 
-u ( F `  k ) )
153151, 152oveq12d 6326 . . . . . . . 8  |-  ( ( abs `  ( F `
 k ) )  =  -u ( F `  k )  ->  (
( sin `  ( abs `  ( F `  k ) ) )  /  ( abs `  ( F `  k )
) )  =  ( ( sin `  -u ( F `  k )
)  /  -u ( F `  k )
) )
154153eqeq1d 2473 . . . . . . 7  |-  ( ( abs `  ( F `
 k ) )  =  -u ( F `  k )  ->  (
( ( sin `  ( abs `  ( F `  k ) ) )  /  ( abs `  ( F `  k )
) )  =  ( ( sin `  ( F `  k )
)  /  ( F `
 k ) )  <-> 
( ( sin `  -u ( F `  k )
)  /  -u ( F `  k )
)  =  ( ( sin `  ( F `
 k ) )  /  ( F `  k ) ) ) )
155150, 154syl5ibrcom 230 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  = 
-u ( F `  k )  ->  (
( sin `  ( abs `  ( F `  k ) ) )  /  ( abs `  ( F `  k )
) )  =  ( ( sin `  ( F `  k )
)  /  ( F `
 k ) ) ) )
15619absord 13554 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  =  ( F `  k
)  \/  ( abs `  ( F `  k
) )  =  -u ( F `  k ) ) )
157144, 155, 156mpjaod 388 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( sin `  ( abs `  ( F `  k )
) )  /  ( abs `  ( F `  k ) ) )  =  ( ( sin `  ( F `  k
) )  /  ( F `  k )
) )
158140, 157breqtrd 4420 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 1  -  ( ( ( F `  k ) ^ 2 )  / 
3 ) )  < 
( ( sin `  ( F `  k )
)  /  ( F `
 k ) ) )
15984, 98, 158ltled 9800 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 1  -  ( ( ( F `  k ) ^ 2 )  / 
3 ) )  <_ 
( ( sin `  ( F `  k )
)  /  ( F `
 k ) ) )
160159, 77, 953brtr4d 4426 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( H  o.  F ) `  k )  <_  (
( G  o.  F
) `  k )
)
16178a1i 11 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  1  e.  RR )
162135simprd 470 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( sin `  ( abs `  ( F `  k )
) )  <  ( abs `  ( F `  k ) ) )
163103mulid1d 9678 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( abs `  ( F `  k ) )  x.  1 )  =  ( abs `  ( F `
 k ) ) )
164162, 163breqtrrd 4422 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( sin `  ( abs `  ( F `  k )
) )  <  (
( abs `  ( F `  k )
)  x.  1 ) )
165138, 161, 124ltdivmuld 11412 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
( sin `  ( abs `  ( F `  k ) ) )  /  ( abs `  ( F `  k )
) )  <  1  <->  ( sin `  ( abs `  ( F `  k
) ) )  < 
( ( abs `  ( F `  k )
)  x.  1 ) ) )
166164, 165mpbird 240 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( sin `  ( abs `  ( F `  k )
) )  /  ( abs `  ( F `  k ) ) )  <  1 )
167157, 166eqbrtrrd 4418 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( sin `  ( F `  k ) )  / 
( F `  k
) )  <  1
)
16898, 161, 167ltled 9800 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( sin `  ( F `  k ) )  / 
( F `  k
) )  <_  1
)
16995, 168eqbrtrd 4416 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( G  o.  F ) `  k )  <_  1
)
1701, 3, 66, 70, 85, 99, 160, 169climsqz 13781 1  |-  ( ph  ->  ( G  o.  F
)  ~~>  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   T. wtru 1453    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    \ cdif 3387   {csn 3959   class class class wbr 4395    |-> cmpt 4454    o. ccom 4843   Fun wfun 5583   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881    / cdiv 10291   NNcn 10631   2c2 10681   3c3 10682   NN0cn0 10893   ZZ>=cuz 11182   RR+crp 11325   (,]cioc 11661   ^cexp 12310   abscabs 13374    ~~> cli 13625   sincsin 14193   TopOpenctopn 15398  ℂfldccnfld 19047  TopOnctopon 19995    Cn ccn 20317    tX ctx 20652   -cn->ccncf 21986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-fac 12498  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cn 20320  df-cnp 20321  df-tx 20654  df-hmeo 20847  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988
This theorem is referenced by:  sinccvg  30389
  Copyright terms: Public domain W3C validator