MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin01bnd Structured version   Unicode version

Theorem sin01bnd 14005
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
sin01bnd  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )

Proof of Theorem sin01bnd
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0xr 9629 . . . . . . . . 9  |-  0  e.  RR*
2 1re 9584 . . . . . . . . 9  |-  1  e.  RR
3 elioc2 11590 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 670 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 1009 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 eqid 2454 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) )
76resin4p 13958 . . . . . . 7  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
85, 7syl 16 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) ) )
98eqcomd 2462 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )  =  ( sin `  A
) )
105resincld 13963 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  RR )
1110recnd 9611 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  CC )
12 3nn0 10809 . . . . . . . . . 10  |-  3  e.  NN0
13 reexpcl 12168 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
145, 12, 13sylancl 660 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  RR )
15 6nn 10693 . . . . . . . . 9  |-  6  e.  NN
16 nndivre 10567 . . . . . . . . 9  |-  ( ( ( A ^ 3 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
3 )  /  6
)  e.  RR )
1714, 15, 16sylancl 660 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  RR )
185, 17resubcld 9983 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  RR )
1918recnd 9611 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  CC )
20 ax-icn 9540 . . . . . . . . . 10  |-  _i  e.  CC
215recnd 9611 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
22 mulcl 9565 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
2320, 21, 22sylancr 661 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
_i  x.  A )  e.  CC )
24 4nn0 10810 . . . . . . . . 9  |-  4  e.  NN0
256eftlcl 13927 . . . . . . . . 9  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
2623, 24, 25sylancl 660 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k )  e.  CC )
2726imcld 13113 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  RR )
2827recnd 9611 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) )  e.  CC )
2911, 19, 28subaddd 9940 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <-> 
( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( ( n  e. 
NN0  |->  ( ( ( _i  x.  A ) ^ n )  / 
( ! `  n
) ) ) `  k ) ) )  =  ( sin `  A
) ) )
309, 29mpbird 232 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  =  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
3130fveq2d 5852 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  =  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) ) )
3228abscld 13352 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  e.  RR )
3326abscld 13352 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  e.  RR )
34 absimle 13227 . . . . 5  |-  ( sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
3526, 34syl 16 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) ) )
36 reexpcl 12168 . . . . . . 7  |-  ( ( A  e.  RR  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  RR )
375, 24, 36sylancl 660 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  e.  RR )
38 nndivre 10567 . . . . . 6  |-  ( ( ( A ^ 4 )  e.  RR  /\  6  e.  NN )  ->  ( ( A ^
4 )  /  6
)  e.  RR )
3937, 15, 38sylancl 660 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  e.  RR )
406ef01bndlem 14004 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 4 )  /  6 ) )
4112a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  3  e.  NN0 )
42 4z 10894 . . . . . . . . 9  |-  4  e.  ZZ
43 3re 10605 . . . . . . . . . 10  |-  3  e.  RR
44 4re 10608 . . . . . . . . . 10  |-  4  e.  RR
45 3lt4 10701 . . . . . . . . . 10  |-  3  <  4
4643, 44, 45ltleii 9696 . . . . . . . . 9  |-  3  <_  4
47 3nn 10690 . . . . . . . . . . 11  |-  3  e.  NN
4847nnzi 10884 . . . . . . . . . 10  |-  3  e.  ZZ
4948eluz1i 11089 . . . . . . . . 9  |-  ( 4  e.  ( ZZ>= `  3
)  <->  ( 4  e.  ZZ  /\  3  <_ 
4 ) )
5042, 46, 49mpbir2an 918 . . . . . . . 8  |-  4  e.  ( ZZ>= `  3 )
5150a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  4  e.  ( ZZ>= `  3 )
)
524simp2bi 1010 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
53 0re 9585 . . . . . . . . 9  |-  0  e.  RR
54 ltle 9662 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
5553, 5, 54sylancr 661 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
5652, 55mpd 15 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
574simp3bi 1011 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
585, 41, 51, 56, 57leexp2rd 12328 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 4 )  <_ 
( A ^ 3 ) )
59 6re 10612 . . . . . . . 8  |-  6  e.  RR
6059a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  6  e.  RR )
61 6pos 10630 . . . . . . . 8  |-  0  <  6
6261a1i 11 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  6 )
63 lediv1 10403 . . . . . . 7  |-  ( ( ( A ^ 4 )  e.  RR  /\  ( A ^ 3 )  e.  RR  /\  (
6  e.  RR  /\  0  <  6 ) )  ->  ( ( A ^ 4 )  <_ 
( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6437, 14, 60, 62, 63syl112anc 1230 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  <_  ( A ^ 3 )  <->  ( ( A ^ 4 )  / 
6 )  <_  (
( A ^ 3 )  /  6 ) ) )
6558, 64mpbid 210 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 4 )  /  6 )  <_  ( ( A ^ 3 )  / 
6 ) )
6633, 39, 17, 40, 65ltletrd 9731 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) ) `  k
) )  <  (
( A ^ 3 )  /  6 ) )
6732, 33, 17, 35, 66lelttrd 9729 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( Im `  sum_ k  e.  ( ZZ>= ` 
4 ) ( ( n  e.  NN0  |->  ( ( ( _i  x.  A
) ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6831, 67eqbrtrd 4459 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( abs `  ( ( sin `  A )  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 ) )
6910, 18, 17absdifltd 13350 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  <  ( sin `  A
)  /\  ( sin `  A )  <  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) ) ) ) )
7017recnd 9611 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  e.  CC )
7121, 70, 70subsub4d 9953 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( ( A ^ 3 )  / 
6 )  +  ( ( A ^ 3 )  /  6 ) ) ) )
7214recnd 9611 . . . . . . . . . . 11  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  CC )
73 3cn 10606 . . . . . . . . . . . . 13  |-  3  e.  CC
74 3ne0 10626 . . . . . . . . . . . . 13  |-  3  =/=  0
7573, 74pm3.2i 453 . . . . . . . . . . . 12  |-  ( 3  e.  CC  /\  3  =/=  0 )
76 2cnne0 10746 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2  =/=  0 )
77 divdiv1 10251 . . . . . . . . . . . 12  |-  ( ( ( A ^ 3 )  e.  CC  /\  ( 3  e.  CC  /\  3  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( ( A ^ 3 )  / 
3 )  /  2
)  =  ( ( A ^ 3 )  /  ( 3  x.  2 ) ) )
7875, 76, 77mp3an23 1314 . . . . . . . . . . 11  |-  ( ( A ^ 3 )  e.  CC  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
7972, 78syl 16 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  3
)  /  2 )  =  ( ( A ^ 3 )  / 
( 3  x.  2 ) ) )
80 3t2e6 10683 . . . . . . . . . . 11  |-  ( 3  x.  2 )  =  6
8180oveq2i 6281 . . . . . . . . . 10  |-  ( ( A ^ 3 )  /  ( 3  x.  2 ) )  =  ( ( A ^
3 )  /  6
)
8279, 81syl6req 2512 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  6 )  =  ( ( ( A ^ 3 )  /  3 )  / 
2 ) )
8382, 82oveq12d 6288 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( ( ( A ^ 3 )  /  3 )  /  2 )  +  ( ( ( A ^ 3 )  / 
3 )  /  2
) ) )
84 nndivre 10567 . . . . . . . . . . 11  |-  ( ( ( A ^ 3 )  e.  RR  /\  3  e.  NN )  ->  ( ( A ^
3 )  /  3
)  e.  RR )
8514, 47, 84sylancl 660 . . . . . . . . . 10  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
8685recnd 9611 . . . . . . . . 9  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  CC )
87862halvesd 10780 . . . . . . . 8  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A ^ 3 )  / 
3 )  /  2
)  +  ( ( ( A ^ 3 )  /  3 )  /  2 ) )  =  ( ( A ^ 3 )  / 
3 ) )
8883, 87eqtrd 2495 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  6
)  +  ( ( A ^ 3 )  /  6 ) )  =  ( ( A ^ 3 )  / 
3 ) )
8988oveq2d 6286 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( (
( A ^ 3 )  /  6 )  +  ( ( A ^ 3 )  / 
6 ) ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9071, 89eqtrd 2495 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  -  ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( A ^
3 )  /  3
) ) )
9190breq1d 4449 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A  -  ( ( A ^
3 )  /  6
) )  -  (
( A ^ 3 )  /  6 ) )  <  ( sin `  A )  <->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) ) )
9221, 70npcand 9926 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  6 ) )  +  ( ( A ^ 3 )  /  6 ) )  =  A )
9392breq2d 4451 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( sin `  A
)  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) )  <->  ( sin `  A )  <  A
) )
9491, 93anbi12d 708 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  -  ( ( A ^
3 )  /  6
) )  <  ( sin `  A )  /\  ( sin `  A )  <  ( ( A  -  ( ( A ^ 3 )  / 
6 ) )  +  ( ( A ^
3 )  /  6
) ) )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9569, 94bitrd 253 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( abs `  (
( sin `  A
)  -  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  <  ( ( A ^ 3 )  /  6 )  <->  ( ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
)  /\  ( sin `  A )  <  A
) ) )
9668, 95mpbid 210 1  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   class class class wbr 4439    |-> cmpt 4497   ` cfv 5570  (class class class)co 6270   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482   _ici 9483    + caddc 9484    x. cmul 9486   RR*cxr 9616    < clt 9617    <_ cle 9618    - cmin 9796    / cdiv 10202   NNcn 10531   2c2 10581   3c3 10582   4c4 10583   6c6 10585   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11082   (,]cioc 11533   ^cexp 12151   !cfa 12338   Imcim 13016   abscabs 13152   sum_csu 13593   sincsin 13884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ioc 11537  df-ico 11538  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12093  df-exp 12152  df-fac 12339  df-hash 12391  df-shft 12985  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-limsup 13379  df-clim 13396  df-rlim 13397  df-sum 13594  df-ef 13888  df-sin 13890
This theorem is referenced by:  sinltx  14009  sin01gt0  14010  tangtx  23067  sinccvglem  29305
  Copyright terms: Public domain W3C validator