MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin0 Structured version   Unicode version

Theorem sin0 13521
Description: Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.)
Assertion
Ref Expression
sin0  |-  ( sin `  0 )  =  0

Proof of Theorem sin0
StepHypRef Expression
1 neg0 9742 . . . 4  |-  -u 0  =  0
21fveq2i 5778 . . 3  |-  ( sin `  -u 0 )  =  ( sin `  0
)
3 0cn 9465 . . . 4  |-  0  e.  CC
4 sinneg 13518 . . . 4  |-  ( 0  e.  CC  ->  ( sin `  -u 0 )  = 
-u ( sin `  0
) )
53, 4ax-mp 5 . . 3  |-  ( sin `  -u 0 )  = 
-u ( sin `  0
)
62, 5eqtr3i 2480 . 2  |-  ( sin `  0 )  = 
-u ( sin `  0
)
7 sincl 13498 . . . 4  |-  ( 0  e.  CC  ->  ( sin `  0 )  e.  CC )
83, 7ax-mp 5 . . 3  |-  ( sin `  0 )  e.  CC
98eqnegi 10147 . 2  |-  ( ( sin `  0 )  =  -u ( sin `  0
)  <->  ( sin `  0
)  =  0 )
106, 9mpbi 208 1  |-  ( sin `  0 )  =  0
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1757   ` cfv 5502   CCcc 9367   0cc0 9369   -ucneg 9683   sincsin 13437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458  ax-inf2 7934  ax-cnex 9425  ax-resscn 9426  ax-1cn 9427  ax-icn 9428  ax-addcl 9429  ax-addrcl 9430  ax-mulcl 9431  ax-mulrcl 9432  ax-mulcom 9433  ax-addass 9434  ax-mulass 9435  ax-distr 9436  ax-i2m1 9437  ax-1ne0 9438  ax-1rid 9439  ax-rnegex 9440  ax-rrecex 9441  ax-cnre 9442  ax-pre-lttri 9443  ax-pre-lttrn 9444  ax-pre-ltadd 9445  ax-pre-mulgt0 9446  ax-pre-sup 9447  ax-addf 9448  ax-mulf 9449
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-nel 2644  df-ral 2797  df-rex 2798  df-reu 2799  df-rmo 2800  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-pss 3428  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4176  df-int 4213  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-tr 4470  df-eprel 4716  df-id 4720  df-po 4725  df-so 4726  df-fr 4763  df-se 4764  df-we 4765  df-ord 4806  df-on 4807  df-lim 4808  df-suc 4809  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-isom 5511  df-riota 6137  df-ov 6179  df-oprab 6180  df-mpt2 6181  df-om 6563  df-1st 6663  df-2nd 6664  df-recs 6918  df-rdg 6952  df-1o 7006  df-oadd 7010  df-er 7187  df-pm 7303  df-en 7397  df-dom 7398  df-sdom 7399  df-fin 7400  df-sup 7778  df-oi 7811  df-card 8196  df-pnf 9507  df-mnf 9508  df-xr 9509  df-ltxr 9510  df-le 9511  df-sub 9684  df-neg 9685  df-div 10081  df-nn 10410  df-2 10467  df-3 10468  df-n0 10667  df-z 10734  df-uz 10949  df-rp 11079  df-ico 11393  df-fz 11525  df-fzo 11636  df-fl 11729  df-seq 11894  df-exp 11953  df-fac 12139  df-hash 12191  df-shft 12644  df-cj 12676  df-re 12677  df-im 12678  df-sqr 12812  df-abs 12813  df-limsup 13037  df-clim 13054  df-rlim 13055  df-sum 13252  df-ef 13441  df-sin 13443
This theorem is referenced by:  tan0  13523  demoivreALT  13573  sin2kpi  22047  sinq12ge0  22072  sinkpi  22083  itgsinexplem1  29918
  Copyright terms: Public domain W3C validator