MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplim Structured version   Unicode version

Theorem simplim 151
Description: Simplification. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
Assertion
Ref Expression
simplim  |-  ( -.  ( ph  ->  ps )  ->  ph )

Proof of Theorem simplim
StepHypRef Expression
1 pm2.21 108 . 2  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
21con1i 129 1  |-  ( -.  ( ph  ->  ps )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.5  152  pm2.521  154  impt  157  peirce  181  bi1  186  dfbi1  192  imbi12  322  pm4.79  583  mptbi12f  29147  ac6s6  29152
  Copyright terms: Public domain W3C validator