MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r3 Structured version   Unicode version

Theorem simp3r3 1107
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r3  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ch )

Proof of Theorem simp3r3
StepHypRef Expression
1 simpr3 1005 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ch )
213ad2ant3 1020 1  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976
This theorem is referenced by:  nllyrest  20171  cdlemblem  32791  cdleme21  33337  cdleme22b  33341  cdleme40m  33467  cdlemg34  33712  cdlemk5u  33861  cdlemk6u  33862  cdlemk21N  33873  cdlemk20  33874  cdlemk26b-3  33905  cdlemk26-3  33906  cdlemk28-3  33908  cdlemky  33926  cdlemk11t  33946  cdlemkyyN  33962  dihmeetlem20N  34327  stoweidlem56  37188
  Copyright terms: Public domain W3C validator