MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r3 Structured version   Unicode version

Theorem simp3r3 1101
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r3  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ch )

Proof of Theorem simp3r3
StepHypRef Expression
1 simpr3 999 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ch )
213ad2ant3 1014 1  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 970
This theorem is referenced by:  nllyrest  19748  stoweidlem56  31313  cdlemblem  34466  cdleme21  35010  cdleme22b  35014  cdleme40m  35140  cdlemg34  35385  cdlemk5u  35534  cdlemk6u  35535  cdlemk21N  35546  cdlemk20  35547  cdlemk26b-3  35578  cdlemk26-3  35579  cdlemk28-3  35581  cdlemky  35599  cdlemk11t  35619  cdlemkyyN  35635  dihmeetlem20N  36000
  Copyright terms: Public domain W3C validator