MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r3 Structured version   Unicode version

Theorem simp3r3 1098
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r3  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ch )

Proof of Theorem simp3r3
StepHypRef Expression
1 simpr3 996 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ch )
213ad2ant3 1011 1  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  nllyrest  19206  stoweidlem56  29989  cdlemblem  33743  cdleme21  34287  cdleme22b  34291  cdleme40m  34417  cdlemg34  34662  cdlemk5u  34811  cdlemk6u  34812  cdlemk21N  34823  cdlemk20  34824  cdlemk26b-3  34855  cdlemk26-3  34856  cdlemk28-3  34858  cdlemky  34876  cdlemk11t  34896  cdlemkyyN  34912  dihmeetlem20N  35277
  Copyright terms: Public domain W3C validator