MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Unicode version

Theorem simp3r2 1097
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ps )

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 995 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ps )
213ad2ant3 1011 1  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  nllyrest  19192  stoweidlem56  29975  cdlemblem  33719  cdleme21  34263  cdleme22b  34267  cdleme40m  34393  cdlemg34  34638  cdlemk5u  34787  cdlemk6u  34788  cdlemk21N  34799  cdlemk20  34800  cdlemk26b-3  34831  cdlemk26-3  34832  cdlemk28-3  34834  cdlemky  34852  cdlemk11t  34872  cdlemkyyN  34888
  Copyright terms: Public domain W3C validator