MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3r2 Structured version   Unicode version

Theorem simp3r2 1103
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3r2  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ps )

Proof of Theorem simp3r2
StepHypRef Expression
1 simpr2 1001 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ps )
213ad2ant3 1017 1  |-  ( ( ta  /\  et  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )
) )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973
This theorem is referenced by:  nllyrest  20072  stoweidlem56  32004  cdlemblem  35930  cdleme21  36476  cdleme22b  36480  cdleme40m  36606  cdlemg34  36851  cdlemk5u  37000  cdlemk6u  37001  cdlemk21N  37012  cdlemk20  37013  cdlemk26b-3  37044  cdlemk26-3  37045  cdlemk28-3  37047  cdlemky  37065  cdlemk11t  37085  cdlemkyyN  37101
  Copyright terms: Public domain W3C validator