MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3l1 Structured version   Unicode version

Theorem simp3l1 1099
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3l1  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ph )

Proof of Theorem simp3l1
StepHypRef Expression
1 simpl1 997 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ph )
213ad2ant3 1017 1  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973
This theorem is referenced by:  cvmlift2lem10  29021  cdleme26ee  36483  cdleme36m  36584  cdleme40m  36590  cdlemg18b  36802  cdlemk5u  36984  cdlemk6u  36985  cdlemk21N  36996  cdlemk20  36997  cdlemk27-3  37030  cdlemk28-3  37031  dihmeetlem20N  37450
  Copyright terms: Public domain W3C validator