MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3l1 Structured version   Unicode version

Theorem simp3l1 1101
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3l1  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ph )

Proof of Theorem simp3l1
StepHypRef Expression
1 simpl1 999 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ph )
213ad2ant3 1019 1  |-  ( ( ta  /\  et  /\  ( ( ph  /\  ps  /\  ch )  /\  th ) )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
This theorem is referenced by:  cvmlift2lem10  28582  cdleme26ee  35557  cdleme36m  35658  cdleme40m  35664  cdlemg18b  35876  cdlemk5u  36058  cdlemk6u  36059  cdlemk21N  36070  cdlemk20  36071  cdlemk27-3  36104  cdlemk28-3  36105  dihmeetlem20N  36524
  Copyright terms: Public domain W3C validator