MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp333 Structured version   Unicode version

Theorem simp333 1152
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp333  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ch )

Proof of Theorem simp333
StepHypRef Expression
1 simp33 1035 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant3 1020 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976
This theorem is referenced by:  ivthALT  30563  dalemclrju  32653  dath2  32754  cdlema1N  32808  cdleme26eALTN  33380  cdlemk7u  33889  cdlemk11u  33890  cdlemk12u  33891  cdlemk22  33912  cdlemk23-3  33921  cdlemk33N  33928  cdlemk11ta  33948  cdlemk11tc  33964  cdlemk54  33977
  Copyright terms: Public domain W3C validator