MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp333 Structured version   Unicode version

Theorem simp333 1146
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp333  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ch )

Proof of Theorem simp333
StepHypRef Expression
1 simp33 1029 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant3 1014 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 970
This theorem is referenced by:  ivthALT  29717  dalemclrju  34307  dath2  34408  cdlema1N  34462  cdleme26eALTN  35032  cdlemk7u  35541  cdlemk11u  35542  cdlemk12u  35543  cdlemk22  35564  cdlemk23-3  35573  cdlemk33N  35580  cdlemk11ta  35600  cdlemk11tc  35616  cdlemk54  35629
  Copyright terms: Public domain W3C validator