MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp332 Structured version   Unicode version

Theorem simp332 1159
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp332  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ps )

Proof of Theorem simp332
StepHypRef Expression
1 simp32 1042 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ps )
213ad2ant3 1028 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-3an 984
This theorem is referenced by:  ivthALT  30776  dalemclqjt  32912  dath2  33014  cdlema1N  33068  cdleme26eALTN  33640  cdlemk7u  34149  cdlemk11u  34150  cdlemk12u  34151  cdlemk23-3  34181  cdlemk33N  34188  cdlemk11ta  34208  cdlemk11tc  34224  cdlemk54  34237
  Copyright terms: Public domain W3C validator