MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp331 Structured version   Unicode version

Theorem simp331 1158
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp331  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )

Proof of Theorem simp331
StepHypRef Expression
1 simp31 1041 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant3 1028 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-3an 984
This theorem is referenced by:  ivthALT  30776  dalemclpjs  32908  dath2  33011  cdlema1N  33065  cdlemk7u  34146  cdlemk11u  34147  cdlemk12u  34148  cdlemk22  34169  cdlemk23-3  34178  cdlemk24-3  34179  cdlemk33N  34185  cdlemk11ta  34205  cdlemk11tc  34221  cdlemk54  34234
  Copyright terms: Public domain W3C validator