MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp331 Structured version   Unicode version

Theorem simp331 1149
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp331  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )

Proof of Theorem simp331
StepHypRef Expression
1 simp31 1032 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant3 1019 1  |-  ( ( et  /\  ze  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) ) )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
This theorem is referenced by:  ivthALT  29758  dalemclpjs  34448  dath2  34551  cdlema1N  34605  cdlemk7u  35684  cdlemk11u  35685  cdlemk12u  35686  cdlemk22  35707  cdlemk23-3  35716  cdlemk24-3  35717  cdlemk33N  35723  cdlemk11ta  35743  cdlemk11tc  35759  cdlemk54  35772
  Copyright terms: Public domain W3C validator