MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp323 Structured version   Unicode version

Theorem simp323 1146
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp323  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ch )

Proof of Theorem simp323
StepHypRef Expression
1 simp23 1029 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ch )
213ad2ant3 1017 1  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973
This theorem is referenced by:  dalemrot  35794  dath2  35874  cdleme18d  36433  cdleme20i  36456  cdleme20j  36457  cdleme20l2  36460  cdleme20l  36461  cdleme20m  36462  cdleme20  36463  cdleme21j  36475  cdleme22eALTN  36484  cdleme26eALTN  36500  cdlemk16a  36995  cdlemk12u-2N  37029  cdlemk21-2N  37030  cdlemk22  37032  cdlemk31  37035  cdlemk11ta  37068
  Copyright terms: Public domain W3C validator