MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp323 Structured version   Unicode version

Theorem simp323 1140
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp323  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ch )

Proof of Theorem simp323
StepHypRef Expression
1 simp23 1023 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ch )
213ad2ant3 1011 1  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  dalemrot  33620  dath2  33700  cdleme18d  34258  cdleme20i  34280  cdleme20j  34281  cdleme20l2  34284  cdleme20l  34285  cdleme20m  34286  cdleme20  34287  cdleme21j  34299  cdleme22eALTN  34308  cdleme26eALTN  34324  cdlemk16a  34819  cdlemk12u-2N  34853  cdlemk21-2N  34854  cdlemk22  34856  cdlemk31  34859  cdlemk11ta  34892
  Copyright terms: Public domain W3C validator