MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp322 Structured version   Unicode version

Theorem simp322 1139
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp322  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ps )

Proof of Theorem simp322
StepHypRef Expression
1 simp22 1022 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ps )
213ad2ant3 1011 1  |-  ( ( et  /\  ze  /\  ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta ) )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  dalemqnet  33605  dalemrot  33610  dath2  33690  cdleme18d  34248  cdleme20i  34270  cdleme20j  34271  cdleme20l2  34274  cdleme20l  34275  cdleme20m  34276  cdleme20  34277  cdleme21j  34289  cdleme22eALTN  34298  cdleme26eALTN  34314  cdlemk16a  34809  cdlemk12u-2N  34843  cdlemk21-2N  34844  cdlemk22  34846  cdlemk31  34849  cdlemk32  34850  cdlemk11ta  34882  cdlemk11tc  34898
  Copyright terms: Public domain W3C validator