MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp313 Structured version   Unicode version

Theorem simp313 1146
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp313  |-  ( ( et  /\  ze  /\  ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta ) )  ->  ch )

Proof of Theorem simp313
StepHypRef Expression
1 simp13 1029 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant3 1020 1  |-  ( ( et  /\  ze  /\  ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta ) )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976
This theorem is referenced by:  dalemrot  32674  dalem5  32684  dalem-cly  32688  dath2  32754  cdleme26e  33378  cdleme38m  33482  cdleme38n  33483  cdlemg28b  33722  cdlemg28  33723  cdlemk7  33867  cdlemk11  33868  cdlemk12  33869  cdlemk7u  33889  cdlemk11u  33890  cdlemk12u  33891  cdlemk22  33912  cdlemk23-3  33921  cdlemk25-3  33923
  Copyright terms: Public domain W3C validator