![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp312 | Structured version Visualization version Unicode version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp312 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp12 1061 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant3 1053 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 190 df-an 378 df-3an 1009 |
This theorem is referenced by: dalemrot 33293 dalem-cly 33307 dath2 33373 cdleme26e 33997 cdleme38m 34101 cdleme38n 34102 cdleme39n 34104 cdlemg28b 34341 cdlemk7 34486 cdlemk11 34487 cdlemk12 34488 cdlemk7u 34508 cdlemk11u 34509 cdlemk12u 34510 cdlemk22 34531 cdlemk23-3 34540 cdlemk25-3 34542 |
Copyright terms: Public domain | W3C validator |