MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2r3 Structured version   Unicode version

Theorem simp2r3 1101
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2r3  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) )  /\  et )  ->  ch )

Proof of Theorem simp2r3
StepHypRef Expression
1 simpr3 1005 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ch )
213ad2ant2 1019 1  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) )  /\  et )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 976
This theorem is referenced by:  btwnconn1lem8  29719  btwnconn1lem9  29720  btwnconn1lem10  29721  btwnconn1lem11  29722  btwnconn1lem12  29723  jm2.27  30925  cdlemj3  36289
  Copyright terms: Public domain W3C validator