MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2r1 Structured version   Unicode version

Theorem simp2r1 1096
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2r1  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) )  /\  et )  ->  ph )

Proof of Theorem simp2r1
StepHypRef Expression
1 simpr1 1000 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
213ad2ant2 1016 1  |-  ( ( ta  /\  ( th 
/\  ( ph  /\  ps  /\  ch ) )  /\  et )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973
This theorem is referenced by:  btwnconn1lem8  29975  btwnconn1lem9  29976  btwnconn1lem10  29977  btwnconn1lem11  29978  btwnconn1lem12  29979  jm2.27  31192
  Copyright terms: Public domain W3C validator