MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2l2 Structured version   Unicode version

Theorem simp2l2 1094
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2l2  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ps )

Proof of Theorem simp2l2
StepHypRef Expression
1 simpl2 998 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
213ad2ant2 1016 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973
This theorem is referenced by:  btwnconn1lem9  29898  btwnconn1lem10  29899  btwnconn1lem11  29900  btwnconn1lem12  29901  jm2.27  31116  2lplnja  35756  cdlemk21-2N  37030  cdlemk31  37035  cdlemk19xlem  37081
  Copyright terms: Public domain W3C validator