MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2l1 Structured version   Unicode version

Theorem simp2l1 1090
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2l1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ph )

Proof of Theorem simp2l1
StepHypRef Expression
1 simpl1 994 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ph )
213ad2ant2 1013 1  |-  ( ( ta  /\  ( (
ph  /\  ps  /\  ch )  /\  th )  /\  et )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 970
This theorem is referenced by:  btwnconn1lem8  29309  btwnconn1lem11  29312  btwnconn1lem12  29313  jm2.27  30545  2lplnja  34292  cdlemk21-2N  35564  cdlemk19xlem  35615
  Copyright terms: Public domain W3C validator