MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp233 Structured version   Visualization version   Unicode version

Theorem simp233 1160
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp233  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ch )

Proof of Theorem simp233
StepHypRef Expression
1 simp33 1052 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant2 1036 1  |-  ( ( et  /\  ( th 
/\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-an 377  df-3an 993
This theorem is referenced by:  cdlemd3  33810  cdleme21ct  33940  cdleme21e  33942  cdleme26eALTN  33972  cdlemk23-3  34513
  Copyright terms: Public domain W3C validator