MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp223 Structured version   Unicode version

Theorem simp223 1140
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp223  |-  ( ( et  /\  ( th 
/\  ( ph  /\  ps  /\  ch )  /\  ta )  /\  ze )  ->  ch )

Proof of Theorem simp223
StepHypRef Expression
1 simp23 1032 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ch )
213ad2ant2 1019 1  |-  ( ( et  /\  ( th 
/\  ( ph  /\  ps  /\  ch )  /\  ta )  /\  ze )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976
This theorem is referenced by:  4atexlemswapqr  33060  4atexlemcnd  33069  cdleme26eALTN  33360  cdleme27a  33366  cdlemk23-3  33901  cdlemk25-3  33903  cdlemk27-3  33906
  Copyright terms: Public domain W3C validator