MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp221 Structured version   Unicode version

Theorem simp221 1137
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp221  |-  ( ( et  /\  ( th 
/\  ( ph  /\  ps  /\  ch )  /\  ta )  /\  ze )  ->  ph )

Proof of Theorem simp221
StepHypRef Expression
1 simp21 1029 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ph )
213ad2ant2 1018 1  |-  ( ( et  /\  ( th 
/\  ( ph  /\  ps  /\  ch )  /\  ta )  /\  ze )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
This theorem is referenced by:  4atexlemcnd  35269  cdleme26eALTN  35558  cdleme27a  35564  cdlemk23-3  36099  cdlemk25-3  36101  cdlemk27-3  36104
  Copyright terms: Public domain W3C validator