MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp213 Unicode version

Theorem simp213 1097
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp213  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ch )

Proof of Theorem simp213
StepHypRef Expression
1 simp13 989 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant2 979 1  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936
This theorem is referenced by:  cdleme27a  30849  cdlemk5u  31343  cdlemk6u  31344  cdlemk7u  31352  cdlemk11u  31353  cdlemk12u  31354  cdlemk7u-2N  31370  cdlemk11u-2N  31371  cdlemk12u-2N  31372  cdlemk20-2N  31374  cdlemk22  31375  cdlemk22-3  31383  cdlemk33N  31391  cdlemk53b  31438  cdlemk53  31439  cdlemk55a  31441  cdlemkyyN  31444  cdlemk43N  31445
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938
  Copyright terms: Public domain W3C validator