MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp213 Structured version   Unicode version

Theorem simp213 1136
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp213  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ch )

Proof of Theorem simp213
StepHypRef Expression
1 simp13 1028 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant2 1018 1  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
This theorem is referenced by:  cdleme27a  36194  cdlemk5u  36688  cdlemk6u  36689  cdlemk7u  36697  cdlemk11u  36698  cdlemk12u  36699  cdlemk7u-2N  36715  cdlemk11u-2N  36716  cdlemk12u-2N  36717  cdlemk20-2N  36719  cdlemk22  36720  cdlemk22-3  36728  cdlemk33N  36736  cdlemk53b  36783  cdlemk53  36784  cdlemk55a  36786  cdlemkyyN  36789  cdlemk43N  36790
  Copyright terms: Public domain W3C validator