MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp212 Structured version   Unicode version

Theorem simp212 1136
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp212  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ps )

Proof of Theorem simp212
StepHypRef Expression
1 simp12 1028 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ps )
213ad2ant2 1019 1  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 976
This theorem is referenced by:  cdleme27a  35968  cdlemk5u  36462  cdlemk6u  36463  cdlemk7u  36471  cdlemk11u  36472  cdlemk12u  36473  cdlemk7u-2N  36489  cdlemk11u-2N  36490  cdlemk12u-2N  36491  cdlemk20-2N  36493  cdlemk22  36494  cdlemk22-3  36502  cdlemk33N  36510  cdlemk53b  36557  cdlemk53  36558  cdlemk55a  36560  cdlemkyyN  36563  cdlemk43N  36564
  Copyright terms: Public domain W3C validator