MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp211 Structured version   Unicode version

Theorem simp211 1137
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp211  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ph )

Proof of Theorem simp211
StepHypRef Expression
1 simp11 1029 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ph )
213ad2ant2 1021 1  |-  ( ( et  /\  ( (
ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  ze )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 187  df-an 371  df-3an 978
This theorem is referenced by:  cdleme27a  33399  cdlemk5u  33893  cdlemk6u  33894  cdlemk7u  33902  cdlemk11u  33903  cdlemk12u  33904  cdlemk7u-2N  33920  cdlemk11u-2N  33921  cdlemk12u-2N  33922  cdlemk20-2N  33924  cdlemk22  33925  cdlemk33N  33941  cdlemk53b  33988  cdlemk53  33989  cdlemk55a  33991  cdlemkyyN  33994  cdlemk43N  33995
  Copyright terms: Public domain W3C validator