MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1r2 Structured version   Unicode version

Theorem simp1r2 1102
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1r2  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ps )

Proof of Theorem simp1r2
StepHypRef Expression
1 simpr2 1012 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ps )
213ad2ant1 1026 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-3an 984
This theorem is referenced by:  monmatcollpw  19734  lshpkrlem6  32390  atbtwnexOLDN  32721  atbtwnex  32722  3dim3  32743  4atlem11  32883  4atexlem7  33349  cdleme22b  33617
  Copyright terms: Public domain W3C validator