MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1r1 Structured version   Visualization version   Unicode version

Theorem simp1r1 1104
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1r1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ph )

Proof of Theorem simp1r1
StepHypRef Expression
1 simpr1 1014 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
213ad2ant1 1029 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta  /\  et )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 987
This theorem is referenced by:  trisegint  30795  lshpkrlem6  32681  atbtwnexOLDN  33012  atbtwnex  33013  3dim3  33034  3atlem5  33052  4atlem11  33174  4atexlem7  33640  cdleme22b  33908
  Copyright terms: Public domain W3C validator