MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Unicode version

Theorem simp133 1128
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp133
StepHypRef Expression
1 simp33 1029 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant1 1012 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 970
This theorem is referenced by:  tsmsxp  20387  ax5seglem3  23905  exatleN  34077  3atlem1  34156  3atlem2  34157  3atlem6  34161  4atlem11b  34281  4atlem12b  34284  lplncvrlvol2  34288  dalemuea  34304  dath2  34410  4atexlemex6  34747  cdleme22f2  35020  cdleme22g  35021  cdlemg7aN  35298  cdlemg31c  35372  cdlemg36  35387  cdlemj1  35494  cdlemj2  35495  cdlemk23-3  35575  cdlemk26b-3  35578
  Copyright terms: Public domain W3C validator