MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp133 Structured version   Unicode version

Theorem simp133 1136
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp133  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp133
StepHypRef Expression
1 simp33 1037 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ch )
213ad2ant1 1020 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 187  df-an 371  df-3an 978
This theorem is referenced by:  tsmsxp  20951  ax5seglem3  24663  exatleN  32434  3atlem1  32513  3atlem2  32514  3atlem6  32518  4atlem11b  32638  4atlem12b  32641  lplncvrlvol2  32645  dalemuea  32661  dath2  32767  4atexlemex6  33104  cdleme22f2  33379  cdleme22g  33380  cdlemg7aN  33657  cdlemg31c  33731  cdlemg36  33746  cdlemj1  33853  cdlemj2  33854  cdlemk23-3  33934  cdlemk26b-3  33937
  Copyright terms: Public domain W3C validator