MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Structured version   Unicode version

Theorem simp131 1123
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp131
StepHypRef Expression
1 simp31 1024 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant1 1009 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  ax5seglem3  23314  exatleN  33356  3atlem1  33435  3atlem2  33436  3atlem5  33439  2llnjaN  33518  4atlem11b  33560  4atlem12b  33563  lplncvrlvol2  33567  dalemsea  33581  dath2  33689  cdlemblem  33745  dalawlem1  33823  lhpexle3lem  33963  4atexlemex6  34026  cdleme22f2  34299  cdleme22g  34300  cdlemg7aN  34577  cdlemg34  34664  cdlemj1  34773  cdlemk23-3  34854  cdlemk25-3  34856  cdlemk26b-3  34857  cdleml3N  34930
  Copyright terms: Public domain W3C validator