MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp131 Structured version   Unicode version

Theorem simp131 1141
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp131  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp131
StepHypRef Expression
1 simp31 1042 . 2  |-  ( ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  ->  ph )
213ad2ant1 1027 1  |-  ( ( ( th  /\  ta  /\  ( ph  /\  ps  /\ 
ch ) )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 985
This theorem is referenced by:  ax5seglem3  24953  exatleN  32894  3atlem1  32973  3atlem2  32974  3atlem5  32977  2llnjaN  33056  4atlem11b  33098  4atlem12b  33101  lplncvrlvol2  33105  dalemsea  33119  dath2  33227  cdlemblem  33283  dalawlem1  33361  lhpexle3lem  33501  4atexlemex6  33564  cdleme22f2  33839  cdleme22g  33840  cdlemg7aN  34117  cdlemg34  34204  cdlemj1  34313  cdlemk23-3  34394  cdlemk25-3  34396  cdlemk26b-3  34397  cdleml3N  34470
  Copyright terms: Public domain W3C validator