MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp113 Structured version   Unicode version

Theorem simp113 1122
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp113  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp113
StepHypRef Expression
1 simp13 1023 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant1 1012 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 970
This theorem is referenced by:  axcontlem4  23939  0ellimcdiv  31146  limclner  31148  llncvrlpln2  34228  4atlem12b  34282  2lnat  34455  cdlemblem  34464  4atexlemex6  34745  cdleme24  35023  cdleme26ee  35031  cdlemg2idN  35267  dihglblem2N  35966
  Copyright terms: Public domain W3C validator