MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp113 Structured version   Unicode version

Theorem simp113 1119
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp113  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ch )

Proof of Theorem simp113
StepHypRef Expression
1 simp13 1020 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ch )
213ad2ant1 1009 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  axcontlem4  23366  llncvrlpln2  33540  4atlem12b  33594  2lnat  33767  cdlemblem  33776  4atexlemex6  34057  cdleme24  34335  cdleme26ee  34343  cdlemg2idN  34579  dihglblem2N  35278
  Copyright terms: Public domain W3C validator