MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp112 Structured version   Unicode version

Theorem simp112 1127
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp112  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ps )

Proof of Theorem simp112
StepHypRef Expression
1 simp12 1028 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ps )
213ad2ant1 1018 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976
This theorem is referenced by:  axcontlem4  24687  ps-2b  32499  llncvrlpln2  32574  4atlem11b  32625  4atlem12b  32628  2lnat  32801  cdlemblem  32810  4atexlemex6  33091  cdleme24  33371  cdleme26ee  33379  cdlemg2idN  33615  cdlemg31c  33718  cdlemk26-3  33925  dihglblem2N  34314  0ellimcdiv  37023
  Copyright terms: Public domain W3C validator