MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp112 Structured version   Unicode version

Theorem simp112 1126
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp112  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ps )

Proof of Theorem simp112
StepHypRef Expression
1 simp12 1027 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ps )
213ad2ant1 1017 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
This theorem is referenced by:  axcontlem4  23946  0ellimcdiv  31191  ps-2b  34278  llncvrlpln2  34353  4atlem11b  34404  4atlem12b  34407  2lnat  34580  cdlemblem  34589  4atexlemex6  34870  cdleme24  35148  cdleme26ee  35156  cdlemg2idN  35392  cdlemg31c  35495  cdlemk26-3  35702  dihglblem2N  36091
  Copyright terms: Public domain W3C validator