MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp112 Structured version   Unicode version

Theorem simp112 1118
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp112  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ps )

Proof of Theorem simp112
StepHypRef Expression
1 simp12 1019 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ps )
213ad2ant1 1009 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967
This theorem is referenced by:  axcontlem4  23350  ps-2b  33434  llncvrlpln2  33509  4atlem11b  33560  4atlem12b  33563  2lnat  33736  cdlemblem  33745  4atexlemex6  34026  cdleme24  34304  cdleme26ee  34312  cdlemg2idN  34548  cdlemg31c  34651  cdlemk26-3  34858  dihglblem2N  35247
  Copyright terms: Public domain W3C validator