MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp111 Structured version   Unicode version

Theorem simp111 1125
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ph )

Proof of Theorem simp111
StepHypRef Expression
1 simp11 1026 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th  /\  ta )  ->  ph )
213ad2ant1 1017 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th 
/\  ta )  /\  et  /\  ze )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
This theorem is referenced by:  tsmsxp  20420  0ellimcdiv  31219  ps-2b  34296  llncvrlpln2  34371  4atlem11b  34422  4atlem12b  34425  lplncvrlvol2  34429  lneq2at  34592  2lnat  34598  cdlemblem  34607  4atexlemex6  34888  cdleme24  35166  cdleme26ee  35174  cdlemg2idN  35410  cdlemg31c  35513  cdlemk26-3  35720
  Copyright terms: Public domain W3C validator