MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siii Structured version   Unicode version

Theorem siii 26486
Description: Inference from sii 26487. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1  |-  X  =  ( BaseSet `  U )
siii.6  |-  N  =  ( normCV `  U )
siii.7  |-  P  =  ( .iOLD `  U )
siii.9  |-  U  e.  CPreHil
OLD
siii.a  |-  A  e.  X
siii.b  |-  B  e.  X
Assertion
Ref Expression
siii  |-  ( abs `  ( A P B ) )  <_  (
( N `  A
)  x.  ( N `
 B ) )

Proof of Theorem siii
StepHypRef Expression
1 oveq2 6311 . . . . 5  |-  ( B  =  ( 0vec `  U
)  ->  ( A P B )  =  ( A P ( 0vec `  U ) ) )
2 siii.9 . . . . . . 7  |-  U  e.  CPreHil
OLD
32phnvi 26449 . . . . . 6  |-  U  e.  NrmCVec
4 siii.a . . . . . 6  |-  A  e.  X
5 siii.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
6 eqid 2423 . . . . . . 7  |-  ( 0vec `  U )  =  (
0vec `  U )
7 siii.7 . . . . . . 7  |-  P  =  ( .iOLD `  U )
85, 6, 7dip0r 26348 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A P ( 0vec `  U
) )  =  0 )
93, 4, 8mp2an 677 . . . . 5  |-  ( A P ( 0vec `  U
) )  =  0
101, 9syl6eq 2480 . . . 4  |-  ( B  =  ( 0vec `  U
)  ->  ( A P B )  =  0 )
1110abs00bd 13348 . . 3  |-  ( B  =  ( 0vec `  U
)  ->  ( abs `  ( A P B ) )  =  0 )
12 siii.6 . . . . . 6  |-  N  =  ( normCV `  U )
135, 12nvge0 26295 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  0  <_  ( N `  A
) )
143, 4, 13mp2an 677 . . . 4  |-  0  <_  ( N `  A
)
15 siii.b . . . . 5  |-  B  e.  X
165, 12nvge0 26295 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  0  <_  ( N `  B
) )
173, 15, 16mp2an 677 . . . 4  |-  0  <_  ( N `  B
)
185, 12, 3, 4nvcli 26281 . . . . 5  |-  ( N `
 A )  e.  RR
195, 12, 3, 15nvcli 26281 . . . . 5  |-  ( N `
 B )  e.  RR
2018, 19mulge0i 10163 . . . 4  |-  ( ( 0  <_  ( N `  A )  /\  0  <_  ( N `  B
) )  ->  0  <_  ( ( N `  A )  x.  ( N `  B )
) )
2114, 17, 20mp2an 677 . . 3  |-  0  <_  ( ( N `  A )  x.  ( N `  B )
)
2211, 21syl6eqbr 4459 . 2  |-  ( B  =  ( 0vec `  U
)  ->  ( abs `  ( A P B ) )  <_  (
( N `  A
)  x.  ( N `
 B ) ) )
2319recni 9657 . . . . . . . . . . 11  |-  ( N `
 B )  e.  CC
2423sqeq0i 12357 . . . . . . . . . 10  |-  ( ( ( N `  B
) ^ 2 )  =  0  <->  ( N `  B )  =  0 )
255, 6, 12nvz 26290 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
( N `  B
)  =  0  <->  B  =  ( 0vec `  U
) ) )
263, 15, 25mp2an 677 . . . . . . . . . 10  |-  ( ( N `  B )  =  0  <->  B  =  ( 0vec `  U )
)
2724, 26bitri 253 . . . . . . . . 9  |-  ( ( ( N `  B
) ^ 2 )  =  0  <->  B  =  ( 0vec `  U )
)
2827necon3bii 2693 . . . . . . . 8  |-  ( ( ( N `  B
) ^ 2 )  =/=  0  <->  B  =/=  ( 0vec `  U )
)
295, 7dipcl 26343 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  A  e.  X )  ->  ( B P A )  e.  CC )
303, 15, 4, 29mp3an 1361 . . . . . . . . 9  |-  ( B P A )  e.  CC
3119resqcli 12361 . . . . . . . . . 10  |-  ( ( N `  B ) ^ 2 )  e.  RR
3231recni 9657 . . . . . . . . 9  |-  ( ( N `  B ) ^ 2 )  e.  CC
3330, 32divcan1zi 10345 . . . . . . . 8  |-  ( ( ( N `  B
) ^ 2 )  =/=  0  ->  (
( ( B P A )  /  (
( N `  B
) ^ 2 ) )  x.  ( ( N `  B ) ^ 2 ) )  =  ( B P A ) )
3428, 33sylbir 217 . . . . . . 7  |-  ( B  =/=  ( 0vec `  U
)  ->  ( (
( B P A )  /  ( ( N `  B ) ^ 2 ) )  x.  ( ( N `
 B ) ^
2 ) )  =  ( B P A ) )
355, 7dipcj 26345 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
* `  ( A P B ) )  =  ( B P A ) )
363, 4, 15, 35mp3an 1361 . . . . . . 7  |-  ( * `
 ( A P B ) )  =  ( B P A )
3734, 36syl6eqr 2482 . . . . . 6  |-  ( B  =/=  ( 0vec `  U
)  ->  ( (
( B P A )  /  ( ( N `  B ) ^ 2 ) )  x.  ( ( N `
 B ) ^
2 ) )  =  ( * `  ( A P B ) ) )
3837oveq2d 6319 . . . . 5  |-  ( B  =/=  ( 0vec `  U
)  ->  ( ( A P B )  x.  ( ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  x.  (
( N `  B
) ^ 2 ) ) )  =  ( ( A P B )  x.  ( * `
 ( A P B ) ) ) )
3938fveq2d 5883 . . . 4  |-  ( B  =/=  ( 0vec `  U
)  ->  ( sqr `  ( ( A P B )  x.  (
( ( B P A )  /  (
( N `  B
) ^ 2 ) )  x.  ( ( N `  B ) ^ 2 ) ) ) )  =  ( sqr `  ( ( A P B )  x.  ( * `  ( A P B ) ) ) ) )
405, 7dipcl 26343 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A P B )  e.  CC )
413, 4, 15, 40mp3an 1361 . . . . 5  |-  ( A P B )  e.  CC
42 absval 13295 . . . . 5  |-  ( ( A P B )  e.  CC  ->  ( abs `  ( A P B ) )  =  ( sqr `  (
( A P B )  x.  ( * `
 ( A P B ) ) ) ) )
4341, 42ax-mp 5 . . . 4  |-  ( abs `  ( A P B ) )  =  ( sqr `  ( ( A P B )  x.  ( * `  ( A P B ) ) ) )
4439, 43syl6reqr 2483 . . 3  |-  ( B  =/=  ( 0vec `  U
)  ->  ( abs `  ( A P B ) )  =  ( sqr `  ( ( A P B )  x.  ( ( ( B P A )  /  ( ( N `
 B ) ^
2 ) )  x.  ( ( N `  B ) ^ 2 ) ) ) ) )
4534eqcomd 2431 . . . 4  |-  ( B  =/=  ( 0vec `  U
)  ->  ( B P A )  =  ( ( ( B P A )  /  (
( N `  B
) ^ 2 ) )  x.  ( ( N `  B ) ^ 2 ) ) )
4630, 32divclzi 10344 . . . . . 6  |-  ( ( ( N `  B
) ^ 2 )  =/=  0  ->  (
( B P A )  /  ( ( N `  B ) ^ 2 ) )  e.  CC )
4728, 46sylbir 217 . . . . 5  |-  ( B  =/=  ( 0vec `  U
)  ->  ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  e.  CC )
485, 7ipipcj 26346 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( A P B )  x.  ( B P A ) )  =  ( ( abs `  ( A P B ) ) ^ 2 ) )
493, 4, 15, 48mp3an 1361 . . . . . . . . 9  |-  ( ( A P B )  x.  ( B P A ) )  =  ( ( abs `  ( A P B ) ) ^ 2 )
5041, 30, 49mulcomli 9652 . . . . . . . 8  |-  ( ( B P A )  x.  ( A P B ) )  =  ( ( abs `  ( A P B ) ) ^ 2 )
5150oveq1i 6313 . . . . . . 7  |-  ( ( ( B P A )  x.  ( A P B ) )  /  ( ( N `
 B ) ^
2 ) )  =  ( ( ( abs `  ( A P B ) ) ^ 2 )  /  ( ( N `  B ) ^ 2 ) )
52 div23 10291 . . . . . . . . . 10  |-  ( ( ( B P A )  e.  CC  /\  ( A P B )  e.  CC  /\  (
( ( N `  B ) ^ 2 )  e.  CC  /\  ( ( N `  B ) ^ 2 )  =/=  0 ) )  ->  ( (
( B P A )  x.  ( A P B ) )  /  ( ( N `
 B ) ^
2 ) )  =  ( ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  x.  ( A P B ) ) )
5330, 41, 52mp3an12 1351 . . . . . . . . 9  |-  ( ( ( ( N `  B ) ^ 2 )  e.  CC  /\  ( ( N `  B ) ^ 2 )  =/=  0 )  ->  ( ( ( B P A )  x.  ( A P B ) )  / 
( ( N `  B ) ^ 2 ) )  =  ( ( ( B P A )  /  (
( N `  B
) ^ 2 ) )  x.  ( A P B ) ) )
5432, 53mpan 675 . . . . . . . 8  |-  ( ( ( N `  B
) ^ 2 )  =/=  0  ->  (
( ( B P A )  x.  ( A P B ) )  /  ( ( N `
 B ) ^
2 ) )  =  ( ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  x.  ( A P B ) ) )
5528, 54sylbir 217 . . . . . . 7  |-  ( B  =/=  ( 0vec `  U
)  ->  ( (
( B P A )  x.  ( A P B ) )  /  ( ( N `
 B ) ^
2 ) )  =  ( ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  x.  ( A P B ) ) )
5651, 55syl5reqr 2479 . . . . . 6  |-  ( B  =/=  ( 0vec `  U
)  ->  ( (
( B P A )  /  ( ( N `  B ) ^ 2 ) )  x.  ( A P B ) )  =  ( ( ( abs `  ( A P B ) ) ^ 2 )  /  ( ( N `  B ) ^ 2 ) ) )
5741abscli 13451 . . . . . . . . 9  |-  ( abs `  ( A P B ) )  e.  RR
5857resqcli 12361 . . . . . . . 8  |-  ( ( abs `  ( A P B ) ) ^ 2 )  e.  RR
5958, 31redivclzi 10375 . . . . . . 7  |-  ( ( ( N `  B
) ^ 2 )  =/=  0  ->  (
( ( abs `  ( A P B ) ) ^ 2 )  / 
( ( N `  B ) ^ 2 ) )  e.  RR )
6028, 59sylbir 217 . . . . . 6  |-  ( B  =/=  ( 0vec `  U
)  ->  ( (
( abs `  ( A P B ) ) ^ 2 )  / 
( ( N `  B ) ^ 2 ) )  e.  RR )
6156, 60eqeltrd 2511 . . . . 5  |-  ( B  =/=  ( 0vec `  U
)  ->  ( (
( B P A )  /  ( ( N `  B ) ^ 2 ) )  x.  ( A P B ) )  e.  RR )
6226necon3bii 2693 . . . . . . . 8  |-  ( ( N `  B )  =/=  0  <->  B  =/=  ( 0vec `  U )
)
6319sqgt0i 12362 . . . . . . . 8  |-  ( ( N `  B )  =/=  0  ->  0  <  ( ( N `  B ) ^ 2 ) )
6462, 63sylbir 217 . . . . . . 7  |-  ( B  =/=  ( 0vec `  U
)  ->  0  <  ( ( N `  B
) ^ 2 ) )
6557sqge0i 12363 . . . . . . . 8  |-  0  <_  ( ( abs `  ( A P B ) ) ^ 2 )
66 divge0 10476 . . . . . . . 8  |-  ( ( ( ( ( abs `  ( A P B ) ) ^ 2 )  e.  RR  /\  0  <_  ( ( abs `  ( A P B ) ) ^ 2 ) )  /\  (
( ( N `  B ) ^ 2 )  e.  RR  /\  0  <  ( ( N `
 B ) ^
2 ) ) )  ->  0  <_  (
( ( abs `  ( A P B ) ) ^ 2 )  / 
( ( N `  B ) ^ 2 ) ) )
6758, 65, 66mpanl12 687 . . . . . . 7  |-  ( ( ( ( N `  B ) ^ 2 )  e.  RR  /\  0  <  ( ( N `
 B ) ^
2 ) )  -> 
0  <_  ( (
( abs `  ( A P B ) ) ^ 2 )  / 
( ( N `  B ) ^ 2 ) ) )
6831, 64, 67sylancr 668 . . . . . 6  |-  ( B  =/=  ( 0vec `  U
)  ->  0  <_  ( ( ( abs `  ( A P B ) ) ^ 2 )  / 
( ( N `  B ) ^ 2 ) ) )
6968, 56breqtrrd 4448 . . . . 5  |-  ( B  =/=  ( 0vec `  U
)  ->  0  <_  ( ( ( B P A )  /  (
( N `  B
) ^ 2 ) )  x.  ( A P B ) ) )
70 eqid 2423 . . . . . 6  |-  ( -v
`  U )  =  ( -v `  U
)
71 eqid 2423 . . . . . 6  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
725, 12, 7, 2, 4, 15, 70, 71siilem2 26485 . . . . 5  |-  ( ( ( ( B P A )  /  (
( N `  B
) ^ 2 ) )  e.  CC  /\  ( ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  x.  ( A P B ) )  e.  RR  /\  0  <_  ( ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  x.  ( A P B ) ) )  ->  ( ( B P A )  =  ( ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  x.  (
( N `  B
) ^ 2 ) )  ->  ( sqr `  ( ( A P B )  x.  (
( ( B P A )  /  (
( N `  B
) ^ 2 ) )  x.  ( ( N `  B ) ^ 2 ) ) ) )  <_  (
( N `  A
)  x.  ( N `
 B ) ) ) )
7347, 61, 69, 72syl3anc 1265 . . . 4  |-  ( B  =/=  ( 0vec `  U
)  ->  ( ( B P A )  =  ( ( ( B P A )  / 
( ( N `  B ) ^ 2 ) )  x.  (
( N `  B
) ^ 2 ) )  ->  ( sqr `  ( ( A P B )  x.  (
( ( B P A )  /  (
( N `  B
) ^ 2 ) )  x.  ( ( N `  B ) ^ 2 ) ) ) )  <_  (
( N `  A
)  x.  ( N `
 B ) ) ) )
7445, 73mpd 15 . . 3  |-  ( B  =/=  ( 0vec `  U
)  ->  ( sqr `  ( ( A P B )  x.  (
( ( B P A )  /  (
( N `  B
) ^ 2 ) )  x.  ( ( N `  B ) ^ 2 ) ) ) )  <_  (
( N `  A
)  x.  ( N `
 B ) ) )
7544, 74eqbrtrd 4442 . 2  |-  ( B  =/=  ( 0vec `  U
)  ->  ( abs `  ( A P B ) )  <_  (
( N `  A
)  x.  ( N `
 B ) ) )
7622, 75pm2.61ine 2738 1  |-  ( abs `  ( A P B ) )  <_  (
( N `  A
)  x.  ( N `
 B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869    =/= wne 2619   class class class wbr 4421   ` cfv 5599  (class class class)co 6303   CCcc 9539   RRcr 9540   0cc0 9541    x. cmul 9546    < clt 9677    <_ cle 9678    / cdiv 10271   2c2 10661   ^cexp 12273   *ccj 13153   sqrcsqrt 13290   abscabs 13291   NrmCVeccnv 26195   BaseSetcba 26197   .sOLDcns 26198   0veccn0v 26199   -vcnsb 26200   normCVcnmcv 26201   .iOLDcdip 26328   CPreHil OLDccphlo 26445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-er 7369  df-map 7480  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-icc 11644  df-fz 11787  df-fzo 11918  df-seq 12215  df-exp 12274  df-hash 12517  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-clim 13545  df-sum 13746  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cld 20026  df-ntr 20027  df-cls 20028  df-cn 20235  df-cnp 20236  df-t1 20322  df-haus 20323  df-tx 20569  df-hmeo 20762  df-xms 21327  df-ms 21328  df-tms 21329  df-grpo 25911  df-gid 25912  df-ginv 25913  df-gdiv 25914  df-ablo 26002  df-vc 26157  df-nv 26203  df-va 26206  df-ba 26207  df-sm 26208  df-0v 26209  df-vs 26210  df-nmcv 26211  df-ims 26212  df-dip 26329  df-ph 26446
This theorem is referenced by:  sii  26487  bcsiHIL  26825
  Copyright terms: Public domain W3C validator