Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaval Structured version   Visualization version   Unicode version

Theorem sigaval 29006
Description: The set of sigma-algebra with a given base set. (Contributed by Thierry Arnoux, 23-Sep-2016.)
Assertion
Ref Expression
sigaval  |-  ( O  e.  _V  ->  (sigAlgebra `  O )  =  {
s  |  ( s 
C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
Distinct variable group:    x, s, O

Proof of Theorem sigaval
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 df-rab 2765 . . . 4  |-  { s  e.  ~P ~P O  |  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) }  =  { s  |  ( s  e.  ~P ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }
2 selpw 3949 . . . . . 6  |-  ( s  e.  ~P ~P O  <->  s 
C_  ~P O )
32anbi1i 709 . . . . 5  |-  ( ( s  e.  ~P ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) )  <-> 
( s  C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) )
43abbii 2587 . . . 4  |-  { s  |  ( s  e. 
~P ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x
)  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  =  { s  |  ( s  C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) }
51, 4eqtri 2493 . . 3  |-  { s  e.  ~P ~P O  |  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) }  =  { s  |  ( s  C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) }
6 pwexg 4585 . . . 4  |-  ( O  e.  _V  ->  ~P O  e.  _V )
7 pwexg 4585 . . . 4  |-  ( ~P O  e.  _V  ->  ~P ~P O  e.  _V )
8 rabexg 4549 . . . 4  |-  ( ~P ~P O  e.  _V  ->  { s  e.  ~P ~P O  |  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) }  e.  _V )
96, 7, 83syl 18 . . 3  |-  ( O  e.  _V  ->  { s  e.  ~P ~P O  |  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) }  e.  _V )
105, 9syl5eqelr 2554 . 2  |-  ( O  e.  _V  ->  { s  |  ( s  C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  e.  _V )
11 pweq 3945 . . . . . 6  |-  ( o  =  O  ->  ~P o  =  ~P O
)
1211sseq2d 3446 . . . . 5  |-  ( o  =  O  ->  (
s  C_  ~P o  <->  s 
C_  ~P O ) )
13 eleq1 2537 . . . . . 6  |-  ( o  =  O  ->  (
o  e.  s  <->  O  e.  s ) )
14 difeq1 3533 . . . . . . . 8  |-  ( o  =  O  ->  (
o  \  x )  =  ( O  \  x ) )
1514eleq1d 2533 . . . . . . 7  |-  ( o  =  O  ->  (
( o  \  x
)  e.  s  <->  ( O  \  x )  e.  s ) )
1615ralbidv 2829 . . . . . 6  |-  ( o  =  O  ->  ( A. x  e.  s 
( o  \  x
)  e.  s  <->  A. x  e.  s  ( O  \  x )  e.  s ) )
1713, 163anbi12d 1366 . . . . 5  |-  ( o  =  O  ->  (
( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) )  <->  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) )
1812, 17anbi12d 725 . . . 4  |-  ( o  =  O  ->  (
( s  C_  ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) )  <-> 
( s  C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) ) )
1918abbidv 2589 . . 3  |-  ( o  =  O  ->  { s  |  ( s  C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  =  { s  |  ( s  C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
20 df-siga 29004 . . 3  |- sigAlgebra  =  ( o  e.  _V  |->  { s  |  ( s 
C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
2119, 20fvmptg 5961 . 2  |-  ( ( O  e.  _V  /\  { s  |  ( s 
C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  e.  _V )  ->  (sigAlgebra `  O
)  =  { s  |  ( s  C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
2210, 21mpdan 681 1  |-  ( O  e.  _V  ->  (sigAlgebra `  O )  =  {
s  |  ( s 
C_  ~P O  /\  ( O  e.  s  /\  A. x  e.  s  ( O  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   {cab 2457   A.wral 2756   {crab 2760   _Vcvv 3031    \ cdif 3387    C_ wss 3390   ~Pcpw 3942   U.cuni 4190   class class class wbr 4395   ` cfv 5589   omcom 6711    ~<_ cdom 7585  sigAlgebracsiga 29003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-iota 5553  df-fun 5591  df-fv 5597  df-siga 29004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator