Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarmf Structured version   Unicode version

Theorem sigarmf 31493
Description: Signed area is additive (with respect to subtraction) by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
Assertion
Ref Expression
sigarmf  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G B )  =  ( ( A G B )  -  ( C G B ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y
Allowed substitution hints:    G( x, y)

Proof of Theorem sigarmf
StepHypRef Expression
1 cjsub 12932 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( * `  ( A  -  C )
)  =  ( ( * `  A )  -  ( * `  C ) ) )
21oveq1d 6290 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( ( * `  ( A  -  C
) )  x.  B
)  =  ( ( ( * `  A
)  -  ( * `
 C ) )  x.  B ) )
323adant2 1010 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( * `  ( A  -  C )
)  x.  B )  =  ( ( ( * `  A )  -  ( * `  C ) )  x.  B ) )
4 simp1 991 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
54cjcld 12979 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
* `  A )  e.  CC )
6 simp3 993 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
76cjcld 12979 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
* `  C )  e.  CC )
8 simp2 992 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
95, 7, 8subdird 10002 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( * `  A )  -  (
* `  C )
)  x.  B )  =  ( ( ( * `  A )  x.  B )  -  ( ( * `  C )  x.  B
) ) )
103, 9eqtrd 2501 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( * `  ( A  -  C )
)  x.  B )  =  ( ( ( * `  A )  x.  B )  -  ( ( * `  C )  x.  B
) ) )
1110fveq2d 5861 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
Im `  ( (
* `  ( A  -  C ) )  x.  B ) )  =  ( Im `  (
( ( * `  A )  x.  B
)  -  ( ( * `  C )  x.  B ) ) ) )
125, 8mulcld 9605 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( * `  A
)  x.  B )  e.  CC )
137, 8mulcld 9605 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( * `  C
)  x.  B )  e.  CC )
1412, 13imsubd 13000 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
Im `  ( (
( * `  A
)  x.  B )  -  ( ( * `
 C )  x.  B ) ) )  =  ( ( Im
`  ( ( * `
 A )  x.  B ) )  -  ( Im `  ( ( * `  C )  x.  B ) ) ) )
1511, 14eqtrd 2501 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
Im `  ( (
* `  ( A  -  C ) )  x.  B ) )  =  ( ( Im `  ( ( * `  A )  x.  B
) )  -  (
Im `  ( (
* `  C )  x.  B ) ) ) )
164, 6subcld 9919 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  C )  e.  CC )
17 sigar . . . 4  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
1817sigarval 31489 . . 3  |-  ( ( ( A  -  C
)  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  C ) G B )  =  ( Im
`  ( ( * `
 ( A  -  C ) )  x.  B ) ) )
1916, 8, 18syl2anc 661 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G B )  =  ( Im `  ( ( * `  ( A  -  C
) )  x.  B
) ) )
2017sigarval 31489 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A G B )  =  ( Im
`  ( ( * `
 A )  x.  B ) ) )
21203adant3 1011 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A G B )  =  ( Im `  (
( * `  A
)  x.  B ) ) )
22 3simpc 990 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  e.  CC  /\  C  e.  CC ) )
2322ancomd 451 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  e.  CC  /\  B  e.  CC ) )
2417sigarval 31489 . . . 4  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C G B )  =  ( Im
`  ( ( * `
 C )  x.  B ) ) )
2523, 24syl 16 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G B )  =  ( Im `  (
( * `  C
)  x.  B ) ) )
2621, 25oveq12d 6293 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A G B )  -  ( C G B ) )  =  ( ( Im
`  ( ( * `
 A )  x.  B ) )  -  ( Im `  ( ( * `  C )  x.  B ) ) ) )
2715, 19, 263eqtr4d 2511 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G B )  =  ( ( A G B )  -  ( C G B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   ` cfv 5579  (class class class)co 6275    |-> cmpt2 6277   CCcc 9479    x. cmul 9486    - cmin 9794   *ccj 12879   Imcim 12881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-2 10583  df-cj 12882  df-re 12883  df-im 12884
This theorem is referenced by:  sigarms  31495  sigarexp  31498  sigaradd  31505
  Copyright terms: Public domain W3C validator