Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarexp Structured version   Unicode version

Theorem sigarexp 31834
Description: Expand the signed area formula by linearity. (Contributed by Saveliy Skresanov, 20-Sep-2017.)
Hypothesis
Ref Expression
sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
Assertion
Ref Expression
sigarexp  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( ( A G B )  -  ( A G C ) )  -  ( C G B ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y
Allowed substitution hints:    G( x, y)

Proof of Theorem sigarexp
StepHypRef Expression
1 simp2 997 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
2 simp3 998 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
31, 2subcld 9940 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  -  C )  e.  CC )
4 sigar . . . 4  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
54sigarmf 31829 . . 3  |-  ( ( A  e.  CC  /\  ( B  -  C
)  e.  CC  /\  C  e.  CC )  ->  ( ( A  -  C ) G ( B  -  C ) )  =  ( ( A G ( B  -  C ) )  -  ( C G ( B  -  C
) ) ) )
63, 5syld3an2 1275 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( A G ( B  -  C ) )  -  ( C G ( B  -  C ) ) ) )
74sigarms 31831 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A G ( B  -  C ) )  =  ( ( A G B )  -  ( A G C ) ) )
87oveq1d 6309 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A G ( B  -  C ) )  -  ( C G ( B  -  C ) ) )  =  ( ( ( A G B )  -  ( A G C ) )  -  ( C G ( B  -  C ) ) ) )
94sigarms 31831 . . . . 5  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G ( B  -  C ) )  =  ( ( C G B )  -  ( C G C ) ) )
102, 9syld3an1 1274 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G ( B  -  C ) )  =  ( ( C G B )  -  ( C G C ) ) )
114sigarid 31833 . . . . . 6  |-  ( C  e.  CC  ->  ( C G C )  =  0 )
122, 11syl 16 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G C )  =  0 )
1312oveq2d 6310 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C G B )  -  ( C G C ) )  =  ( ( C G B )  - 
0 ) )
144sigarim 31826 . . . . . . 7  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C G B )  e.  RR )
1514recnd 9632 . . . . . 6  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C G B )  e.  CC )
162, 1, 15syl2anc 661 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G B )  e.  CC )
1716subid1d 9929 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C G B )  -  0 )  =  ( C G B ) )
1810, 13, 173eqtrd 2512 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G ( B  -  C ) )  =  ( C G B ) )
1918oveq2d 6310 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A G B )  -  ( A G C ) )  -  ( C G ( B  -  C
) ) )  =  ( ( ( A G B )  -  ( A G C ) )  -  ( C G B ) ) )
206, 8, 193eqtrd 2512 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( ( A G B )  -  ( A G C ) )  -  ( C G B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5593  (class class class)co 6294    |-> cmpt2 6296   CCcc 9500   0cc0 9502    x. cmul 9507    - cmin 9815   *ccj 12904   Imcim 12906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-po 4805  df-so 4806  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-div 10217  df-2 10604  df-cj 12907  df-re 12908  df-im 12909
This theorem is referenced by:  sigarperm  31835
  Copyright terms: Public domain W3C validator