Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigardiv Structured version   Unicode version

Theorem sigardiv 29902
Description: If signed area between vectors  B  -  A and  C  -  A is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
sigardiv.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
sigardiv.b  |-  ( ph  ->  -.  C  =  A )
sigardiv.c  |-  ( ph  ->  ( ( B  -  A ) G ( C  -  A ) )  =  0 )
Assertion
Ref Expression
sigardiv  |-  ( ph  ->  ( ( B  -  A )  /  ( C  -  A )
)  e.  RR )
Distinct variable groups:    x, y, A    x, B, y    x, C, y
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem sigardiv
StepHypRef Expression
1 sigardiv.a . . . . . . . 8  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
21simp2d 1001 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
31simp1d 1000 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
42, 3subcld 9724 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  CC )
51simp3d 1002 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
65, 3subcld 9724 . . . . . 6  |-  ( ph  ->  ( C  -  A
)  e.  CC )
7 sigardiv.b . . . . . . . 8  |-  ( ph  ->  -.  C  =  A )
87neneqad 2686 . . . . . . 7  |-  ( ph  ->  C  =/=  A )
95, 3, 8subne0d 9733 . . . . . 6  |-  ( ph  ->  ( C  -  A
)  =/=  0 )
104, 6, 9cjdivd 12717 . . . . 5  |-  ( ph  ->  ( * `  (
( B  -  A
)  /  ( C  -  A ) ) )  =  ( ( * `  ( B  -  A ) )  /  ( * `  ( C  -  A
) ) ) )
114cjcld 12690 . . . . . . 7  |-  ( ph  ->  ( * `  ( B  -  A )
)  e.  CC )
126cjcld 12690 . . . . . . 7  |-  ( ph  ->  ( * `  ( C  -  A )
)  e.  CC )
136, 9cjne0d 12697 . . . . . . 7  |-  ( ph  ->  ( * `  ( C  -  A )
)  =/=  0 )
1411, 12, 6, 13, 9divcan5rd 10139 . . . . . 6  |-  ( ph  ->  ( ( ( * `
 ( B  -  A ) )  x.  ( C  -  A
) )  /  (
( * `  ( C  -  A )
)  x.  ( C  -  A ) ) )  =  ( ( * `  ( B  -  A ) )  /  ( * `  ( C  -  A
) ) ) )
1511, 6mulcld 9411 . . . . . . . 8  |-  ( ph  ->  ( ( * `  ( B  -  A
) )  x.  ( C  -  A )
)  e.  CC )
16 sigar . . . . . . . . . . 11  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
1716sigarval 29891 . . . . . . . . . 10  |-  ( ( ( B  -  A
)  e.  CC  /\  ( C  -  A
)  e.  CC )  ->  ( ( B  -  A ) G ( C  -  A
) )  =  ( Im `  ( ( * `  ( B  -  A ) )  x.  ( C  -  A ) ) ) )
184, 6, 17syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A ) G ( C  -  A ) )  =  ( Im
`  ( ( * `
 ( B  -  A ) )  x.  ( C  -  A
) ) ) )
19 sigardiv.c . . . . . . . . 9  |-  ( ph  ->  ( ( B  -  A ) G ( C  -  A ) )  =  0 )
2018, 19eqtr3d 2477 . . . . . . . 8  |-  ( ph  ->  ( Im `  (
( * `  ( B  -  A )
)  x.  ( C  -  A ) ) )  =  0 )
2115, 20reim0bd 12694 . . . . . . 7  |-  ( ph  ->  ( ( * `  ( B  -  A
) )  x.  ( C  -  A )
)  e.  RR )
226, 12mulcomd 9412 . . . . . . . 8  |-  ( ph  ->  ( ( C  -  A )  x.  (
* `  ( C  -  A ) ) )  =  ( ( * `
 ( C  -  A ) )  x.  ( C  -  A
) ) )
236cjmulrcld 12700 . . . . . . . 8  |-  ( ph  ->  ( ( C  -  A )  x.  (
* `  ( C  -  A ) ) )  e.  RR )
2422, 23eqeltrrd 2518 . . . . . . 7  |-  ( ph  ->  ( ( * `  ( C  -  A
) )  x.  ( C  -  A )
)  e.  RR )
2512, 6, 13, 9mulne0d 9993 . . . . . . 7  |-  ( ph  ->  ( ( * `  ( C  -  A
) )  x.  ( C  -  A )
)  =/=  0 )
2621, 24, 25redivcld 10164 . . . . . 6  |-  ( ph  ->  ( ( ( * `
 ( B  -  A ) )  x.  ( C  -  A
) )  /  (
( * `  ( C  -  A )
)  x.  ( C  -  A ) ) )  e.  RR )
2714, 26eqeltrrd 2518 . . . . 5  |-  ( ph  ->  ( ( * `  ( B  -  A
) )  /  (
* `  ( C  -  A ) ) )  e.  RR )
2810, 27eqeltrd 2517 . . . 4  |-  ( ph  ->  ( * `  (
( B  -  A
)  /  ( C  -  A ) ) )  e.  RR )
2928cjred 12720 . . 3  |-  ( ph  ->  ( * `  (
* `  ( ( B  -  A )  /  ( C  -  A ) ) ) )  =  ( * `
 ( ( B  -  A )  / 
( C  -  A
) ) ) )
304, 6, 9divcld 10112 . . . 4  |-  ( ph  ->  ( ( B  -  A )  /  ( C  -  A )
)  e.  CC )
3130cjcjd 12693 . . 3  |-  ( ph  ->  ( * `  (
* `  ( ( B  -  A )  /  ( C  -  A ) ) ) )  =  ( ( B  -  A )  /  ( C  -  A ) ) )
3229, 31eqtr3d 2477 . 2  |-  ( ph  ->  ( * `  (
( B  -  A
)  /  ( C  -  A ) ) )  =  ( ( B  -  A )  /  ( C  -  A ) ) )
3332, 28eqeltrrd 2518 1  |-  ( ph  ->  ( ( B  -  A )  /  ( C  -  A )
)  e.  RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5423  (class class class)co 6096    e. cmpt2 6098   CCcc 9285   RRcr 9286   0cc0 9287    x. cmul 9292    - cmin 9600    / cdiv 9998   *ccj 12590   Imcim 12592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-po 4646  df-so 4647  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-2 10385  df-cj 12593  df-re 12594  df-im 12595
This theorem is referenced by:  sigarcol  29905  sharhght  29906
  Copyright terms: Public domain W3C validator