Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarcol Structured version   Visualization version   Unicode version

Theorem sigarcol 38467
Description: Given three points  A,  B and  C such that  -.  A  =  B, the point  C lies on the line going through  A and  B iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigarcol.sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
sigarcol.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
sigarcol.b  |-  ( ph  ->  -.  A  =  B )
Assertion
Ref Expression
sigarcol  |-  ( ph  ->  ( ( ( A  -  C ) G ( B  -  C
) )  =  0  <->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B
) ) ) ) )
Distinct variable groups:    x, t,
y, A    t, B, x, y    t, C, x, y    t, G    ph, t
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem sigarcol
StepHypRef Expression
1 sigarcol.sigar . . . . 5  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
2 sigarcol.a . . . . . . . 8  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
32simp2d 1020 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
42simp3d 1021 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
52simp1d 1019 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
63, 4, 53jca 1187 . . . . . 6  |-  ( ph  ->  ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC )
)
76adantr 467 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC ) )
8 sigarcol.b . . . . . 6  |-  ( ph  ->  -.  A  =  B )
98adantr 467 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  -.  A  =  B )
101sigarperm 38463 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( B  -  A ) G ( C  -  A
) ) )
112, 10syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( A  -  C ) G ( B  -  C ) )  =  ( ( B  -  A ) G ( C  -  A ) ) )
121sigarperm 38463 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
( B  -  A
) G ( C  -  A ) )  =  ( ( C  -  B ) G ( A  -  B
) ) )
136, 12syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  A ) G ( C  -  A ) )  =  ( ( C  -  B ) G ( A  -  B ) ) )
1411, 13eqtrd 2484 . . . . . . 7  |-  ( ph  ->  ( ( A  -  C ) G ( B  -  C ) )  =  ( ( C  -  B ) G ( A  -  B ) ) )
1514eqeq1d 2452 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  C ) G ( B  -  C
) )  =  0  <-> 
( ( C  -  B ) G ( A  -  B ) )  =  0 ) )
1615biimpa 487 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  (
( C  -  B
) G ( A  -  B ) )  =  0 )
171, 7, 9, 16sigardiv 38464 . . . 4  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  (
( C  -  B
)  /  ( A  -  B ) )  e.  RR )
184, 3subcld 9983 . . . . . . . 8  |-  ( ph  ->  ( C  -  B
)  e.  CC )
1918adantr 467 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( C  -  B )  e.  CC )
205, 3subcld 9983 . . . . . . . 8  |-  ( ph  ->  ( A  -  B
)  e.  CC )
2120adantr 467 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( A  -  B )  e.  CC )
225adantr 467 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  A  e.  CC )
233adantr 467 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  B  e.  CC )
249neqned 2630 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  A  =/=  B )
2522, 23, 24subne0d 9992 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( A  -  B )  =/=  0 )
2619, 21, 25divcan1d 10381 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  (
( ( C  -  B )  /  ( A  -  B )
)  x.  ( A  -  B ) )  =  ( C  -  B ) )
2726oveq2d 6304 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( B  +  ( (
( C  -  B
)  /  ( A  -  B ) )  x.  ( A  -  B ) ) )  =  ( B  +  ( C  -  B
) ) )
284adantr 467 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  C  e.  CC )
2923, 28pncan3d 9986 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( B  +  ( C  -  B ) )  =  C )
3027, 29eqtr2d 2485 . . . 4  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  C  =  ( B  +  ( ( ( C  -  B )  / 
( A  -  B
) )  x.  ( A  -  B )
) ) )
31 oveq1 6295 . . . . . . 7  |-  ( t  =  ( ( C  -  B )  / 
( A  -  B
) )  ->  (
t  x.  ( A  -  B ) )  =  ( ( ( C  -  B )  /  ( A  -  B ) )  x.  ( A  -  B
) ) )
3231oveq2d 6304 . . . . . 6  |-  ( t  =  ( ( C  -  B )  / 
( A  -  B
) )  ->  ( B  +  ( t  x.  ( A  -  B
) ) )  =  ( B  +  ( ( ( C  -  B )  /  ( A  -  B )
)  x.  ( A  -  B ) ) ) )
3332eqeq2d 2460 . . . . 5  |-  ( t  =  ( ( C  -  B )  / 
( A  -  B
) )  ->  ( C  =  ( B  +  ( t  x.  ( A  -  B
) ) )  <->  C  =  ( B  +  (
( ( C  -  B )  /  ( A  -  B )
)  x.  ( A  -  B ) ) ) ) )
3433rspcev 3149 . . . 4  |-  ( ( ( ( C  -  B )  /  ( A  -  B )
)  e.  RR  /\  C  =  ( B  +  ( ( ( C  -  B )  /  ( A  -  B ) )  x.  ( A  -  B
) ) ) )  ->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B
) ) ) )
3517, 30, 34syl2anc 666 . . 3  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )
3635ex 436 . 2  |-  ( ph  ->  ( ( ( A  -  C ) G ( B  -  C
) )  =  0  ->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B
) ) ) ) )
37143ad2ant1 1028 . . . 4  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  C ) G ( B  -  C ) )  =  ( ( C  -  B ) G ( A  -  B ) ) )
38 simp3 1009 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  C  =  ( B  +  (
t  x.  ( A  -  B ) ) ) )
3938oveq1d 6303 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( C  -  B )  =  ( ( B  +  ( t  x.  ( A  -  B ) ) )  -  B ) )
4033ad2ant1 1028 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  B  e.  CC )
41 simp2 1008 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  t  e.  RR )
4241recnd 9666 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  t  e.  CC )
4353ad2ant1 1028 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  A  e.  CC )
4443, 40subcld 9983 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( A  -  B )  e.  CC )
4542, 44mulcld 9660 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( t  x.  ( A  -  B
) )  e.  CC )
4640, 45pncan2d 9985 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( B  +  ( t  x.  ( A  -  B
) ) )  -  B )  =  ( t  x.  ( A  -  B ) ) )
4739, 46eqtrd 2484 . . . . . 6  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( C  -  B )  =  ( t  x.  ( A  -  B ) ) )
4847oveq1d 6303 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( C  -  B ) G ( A  -  B ) )  =  ( ( t  x.  ( A  -  B
) ) G ( A  -  B ) ) )
4942, 44mulcomd 9661 . . . . . 6  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( t  x.  ( A  -  B
) )  =  ( ( A  -  B
)  x.  t ) )
5049oveq1d 6303 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( (
t  x.  ( A  -  B ) ) G ( A  -  B ) )  =  ( ( ( A  -  B )  x.  t ) G ( A  -  B ) ) )
5148, 50eqtrd 2484 . . . 4  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( C  -  B ) G ( A  -  B ) )  =  ( ( ( A  -  B )  x.  t ) G ( A  -  B ) ) )
5244, 42mulcld 9660 . . . . . 6  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  B )  x.  t )  e.  CC )
531sigarac 38455 . . . . . 6  |-  ( ( ( ( A  -  B )  x.  t
)  e.  CC  /\  ( A  -  B
)  e.  CC )  ->  ( ( ( A  -  B )  x.  t ) G ( A  -  B
) )  =  -u ( ( A  -  B ) G ( ( A  -  B
)  x.  t ) ) )
5452, 44, 53syl2anc 666 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( (
( A  -  B
)  x.  t ) G ( A  -  B ) )  = 
-u ( ( A  -  B ) G ( ( A  -  B )  x.  t
) ) )
551sigarls 38460 . . . . . . . 8  |-  ( ( ( A  -  B
)  e.  CC  /\  ( A  -  B
)  e.  CC  /\  t  e.  RR )  ->  ( ( A  -  B ) G ( ( A  -  B
)  x.  t ) )  =  ( ( ( A  -  B
) G ( A  -  B ) )  x.  t ) )
5644, 44, 41, 55syl3anc 1267 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  B ) G ( ( A  -  B )  x.  t ) )  =  ( ( ( A  -  B ) G ( A  -  B
) )  x.  t
) )
571sigarid 38461 . . . . . . . . 9  |-  ( ( A  -  B )  e.  CC  ->  (
( A  -  B
) G ( A  -  B ) )  =  0 )
5844, 57syl 17 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  B ) G ( A  -  B ) )  =  0 )
5958oveq1d 6303 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( (
( A  -  B
) G ( A  -  B ) )  x.  t )  =  ( 0  x.  t
) )
6042mul02d 9828 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( 0  x.  t )  =  0 )
6156, 59, 603eqtrd 2488 . . . . . 6  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  B ) G ( ( A  -  B )  x.  t ) )  =  0 )
6261negeqd 9866 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  -u ( ( A  -  B ) G ( ( A  -  B )  x.  t ) )  = 
-u 0 )
63 neg0 9917 . . . . . 6  |-  -u 0  =  0
6463a1i 11 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  -u 0  =  0 )
6554, 62, 643eqtrd 2488 . . . 4  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( (
( A  -  B
)  x.  t ) G ( A  -  B ) )  =  0 )
6637, 51, 653eqtrd 2488 . . 3  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  C ) G ( B  -  C ) )  =  0 )
6766rexlimdv3a 2880 . 2  |-  ( ph  ->  ( E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B ) ) )  ->  ( ( A  -  C ) G ( B  -  C
) )  =  0 ) )
6836, 67impbid 194 1  |-  ( ph  ->  ( ( ( A  -  C ) G ( B  -  C
) )  =  0  <->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 984    = wceq 1443    e. wcel 1886   E.wrex 2737   ` cfv 5581  (class class class)co 6288    |-> cmpt2 6290   CCcc 9534   RRcr 9535   0cc0 9536    + caddc 9539    x. cmul 9541    - cmin 9857   -ucneg 9858    / cdiv 10266   *ccj 13152   Imcim 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-po 4754  df-so 4755  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-2 10665  df-cj 13155  df-re 13156  df-im 13157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator