Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarcol Structured version   Unicode version

Theorem sigarcol 37449
Description: Given three points  A,  B and  C such that  -.  A  =  B, the point  C lies on the line going through  A and  B iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigarcol.sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
sigarcol.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
sigarcol.b  |-  ( ph  ->  -.  A  =  B )
Assertion
Ref Expression
sigarcol  |-  ( ph  ->  ( ( ( A  -  C ) G ( B  -  C
) )  =  0  <->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B
) ) ) ) )
Distinct variable groups:    x, t,
y, A    t, B, x, y    t, C, x, y    t, G    ph, t
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem sigarcol
StepHypRef Expression
1 sigarcol.sigar . . . . 5  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
2 sigarcol.a . . . . . . . 8  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
32simp2d 1010 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
42simp3d 1011 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
52simp1d 1009 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
63, 4, 53jca 1177 . . . . . 6  |-  ( ph  ->  ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC )
)
76adantr 463 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC ) )
8 sigarcol.b . . . . . 6  |-  ( ph  ->  -.  A  =  B )
98adantr 463 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  -.  A  =  B )
101sigarperm 37445 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  C
) G ( B  -  C ) )  =  ( ( B  -  A ) G ( C  -  A
) ) )
112, 10syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( A  -  C ) G ( B  -  C ) )  =  ( ( B  -  A ) G ( C  -  A ) ) )
121sigarperm 37445 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
( B  -  A
) G ( C  -  A ) )  =  ( ( C  -  B ) G ( A  -  B
) ) )
136, 12syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  A ) G ( C  -  A ) )  =  ( ( C  -  B ) G ( A  -  B ) ) )
1411, 13eqtrd 2443 . . . . . . 7  |-  ( ph  ->  ( ( A  -  C ) G ( B  -  C ) )  =  ( ( C  -  B ) G ( A  -  B ) ) )
1514eqeq1d 2404 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  C ) G ( B  -  C
) )  =  0  <-> 
( ( C  -  B ) G ( A  -  B ) )  =  0 ) )
1615biimpa 482 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  (
( C  -  B
) G ( A  -  B ) )  =  0 )
171, 7, 9, 16sigardiv 37446 . . . 4  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  (
( C  -  B
)  /  ( A  -  B ) )  e.  RR )
184, 3subcld 9967 . . . . . . . 8  |-  ( ph  ->  ( C  -  B
)  e.  CC )
1918adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( C  -  B )  e.  CC )
205, 3subcld 9967 . . . . . . . 8  |-  ( ph  ->  ( A  -  B
)  e.  CC )
2120adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( A  -  B )  e.  CC )
225adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  A  e.  CC )
233adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  B  e.  CC )
249neqned 2606 . . . . . . . 8  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  A  =/=  B )
2522, 23, 24subne0d 9976 . . . . . . 7  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( A  -  B )  =/=  0 )
2619, 21, 25divcan1d 10362 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  (
( ( C  -  B )  /  ( A  -  B )
)  x.  ( A  -  B ) )  =  ( C  -  B ) )
2726oveq2d 6294 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( B  +  ( (
( C  -  B
)  /  ( A  -  B ) )  x.  ( A  -  B ) ) )  =  ( B  +  ( C  -  B
) ) )
284adantr 463 . . . . . 6  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  C  e.  CC )
2923, 28pncan3d 9970 . . . . 5  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  ( B  +  ( C  -  B ) )  =  C )
3027, 29eqtr2d 2444 . . . 4  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  C  =  ( B  +  ( ( ( C  -  B )  / 
( A  -  B
) )  x.  ( A  -  B )
) ) )
31 oveq1 6285 . . . . . . 7  |-  ( t  =  ( ( C  -  B )  / 
( A  -  B
) )  ->  (
t  x.  ( A  -  B ) )  =  ( ( ( C  -  B )  /  ( A  -  B ) )  x.  ( A  -  B
) ) )
3231oveq2d 6294 . . . . . 6  |-  ( t  =  ( ( C  -  B )  / 
( A  -  B
) )  ->  ( B  +  ( t  x.  ( A  -  B
) ) )  =  ( B  +  ( ( ( C  -  B )  /  ( A  -  B )
)  x.  ( A  -  B ) ) ) )
3332eqeq2d 2416 . . . . 5  |-  ( t  =  ( ( C  -  B )  / 
( A  -  B
) )  ->  ( C  =  ( B  +  ( t  x.  ( A  -  B
) ) )  <->  C  =  ( B  +  (
( ( C  -  B )  /  ( A  -  B )
)  x.  ( A  -  B ) ) ) ) )
3433rspcev 3160 . . . 4  |-  ( ( ( ( C  -  B )  /  ( A  -  B )
)  e.  RR  /\  C  =  ( B  +  ( ( ( C  -  B )  /  ( A  -  B ) )  x.  ( A  -  B
) ) ) )  ->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B
) ) ) )
3517, 30, 34syl2anc 659 . . 3  |-  ( (
ph  /\  ( ( A  -  C ) G ( B  -  C ) )  =  0 )  ->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )
3635ex 432 . 2  |-  ( ph  ->  ( ( ( A  -  C ) G ( B  -  C
) )  =  0  ->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B
) ) ) ) )
37143ad2ant1 1018 . . . 4  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  C ) G ( B  -  C ) )  =  ( ( C  -  B ) G ( A  -  B ) ) )
38 simp3 999 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  C  =  ( B  +  (
t  x.  ( A  -  B ) ) ) )
3938oveq1d 6293 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( C  -  B )  =  ( ( B  +  ( t  x.  ( A  -  B ) ) )  -  B ) )
4033ad2ant1 1018 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  B  e.  CC )
41 simp2 998 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  t  e.  RR )
4241recnd 9652 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  t  e.  CC )
4353ad2ant1 1018 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  A  e.  CC )
4443, 40subcld 9967 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( A  -  B )  e.  CC )
4542, 44mulcld 9646 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( t  x.  ( A  -  B
) )  e.  CC )
4640, 45pncan2d 9969 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( B  +  ( t  x.  ( A  -  B
) ) )  -  B )  =  ( t  x.  ( A  -  B ) ) )
4739, 46eqtrd 2443 . . . . . 6  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( C  -  B )  =  ( t  x.  ( A  -  B ) ) )
4847oveq1d 6293 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( C  -  B ) G ( A  -  B ) )  =  ( ( t  x.  ( A  -  B
) ) G ( A  -  B ) ) )
4942, 44mulcomd 9647 . . . . . 6  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( t  x.  ( A  -  B
) )  =  ( ( A  -  B
)  x.  t ) )
5049oveq1d 6293 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( (
t  x.  ( A  -  B ) ) G ( A  -  B ) )  =  ( ( ( A  -  B )  x.  t ) G ( A  -  B ) ) )
5148, 50eqtrd 2443 . . . 4  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( C  -  B ) G ( A  -  B ) )  =  ( ( ( A  -  B )  x.  t ) G ( A  -  B ) ) )
5244, 42mulcld 9646 . . . . . 6  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  B )  x.  t )  e.  CC )
531sigarac 37437 . . . . . 6  |-  ( ( ( ( A  -  B )  x.  t
)  e.  CC  /\  ( A  -  B
)  e.  CC )  ->  ( ( ( A  -  B )  x.  t ) G ( A  -  B
) )  =  -u ( ( A  -  B ) G ( ( A  -  B
)  x.  t ) ) )
5452, 44, 53syl2anc 659 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( (
( A  -  B
)  x.  t ) G ( A  -  B ) )  = 
-u ( ( A  -  B ) G ( ( A  -  B )  x.  t
) ) )
551sigarls 37442 . . . . . . . 8  |-  ( ( ( A  -  B
)  e.  CC  /\  ( A  -  B
)  e.  CC  /\  t  e.  RR )  ->  ( ( A  -  B ) G ( ( A  -  B
)  x.  t ) )  =  ( ( ( A  -  B
) G ( A  -  B ) )  x.  t ) )
5644, 44, 41, 55syl3anc 1230 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  B ) G ( ( A  -  B )  x.  t ) )  =  ( ( ( A  -  B ) G ( A  -  B
) )  x.  t
) )
571sigarid 37443 . . . . . . . . 9  |-  ( ( A  -  B )  e.  CC  ->  (
( A  -  B
) G ( A  -  B ) )  =  0 )
5844, 57syl 17 . . . . . . . 8  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  B ) G ( A  -  B ) )  =  0 )
5958oveq1d 6293 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( (
( A  -  B
) G ( A  -  B ) )  x.  t )  =  ( 0  x.  t
) )
6042mul02d 9812 . . . . . . 7  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( 0  x.  t )  =  0 )
6156, 59, 603eqtrd 2447 . . . . . 6  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  B ) G ( ( A  -  B )  x.  t ) )  =  0 )
6261negeqd 9850 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  -u ( ( A  -  B ) G ( ( A  -  B )  x.  t ) )  = 
-u 0 )
63 neg0 9901 . . . . . 6  |-  -u 0  =  0
6463a1i 11 . . . . 5  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  -u 0  =  0 )
6554, 62, 643eqtrd 2447 . . . 4  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( (
( A  -  B
)  x.  t ) G ( A  -  B ) )  =  0 )
6637, 51, 653eqtrd 2447 . . 3  |-  ( (
ph  /\  t  e.  RR  /\  C  =  ( B  +  ( t  x.  ( A  -  B ) ) ) )  ->  ( ( A  -  C ) G ( B  -  C ) )  =  0 )
6766rexlimdv3a 2898 . 2  |-  ( ph  ->  ( E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B ) ) )  ->  ( ( A  -  C ) G ( B  -  C
) )  =  0 ) )
6836, 67impbid 190 1  |-  ( ph  ->  ( ( ( A  -  C ) G ( B  -  C
) )  =  0  <->  E. t  e.  RR  C  =  ( B  +  ( t  x.  ( A  -  B
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   E.wrex 2755   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280   CCcc 9520   RRcr 9521   0cc0 9522    + caddc 9525    x. cmul 9527    - cmin 9841   -ucneg 9842    / cdiv 10247   *ccj 13078   Imcim 13080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-2 10635  df-cj 13081  df-re 13082  df-im 13083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator