Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaraf Structured version   Unicode version

Theorem sigaraf 29860
Description: Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
Assertion
Ref Expression
sigaraf  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
) G B )  =  ( ( A G B )  +  ( C G B ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y
Allowed substitution hints:    G( x, y)

Proof of Theorem sigaraf
StepHypRef Expression
1 cjadd 12622 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( * `  ( A  +  C )
)  =  ( ( * `  A )  +  ( * `  C ) ) )
21oveq1d 6101 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( ( * `  ( A  +  C
) )  x.  B
)  =  ( ( ( * `  A
)  +  ( * `
 C ) )  x.  B ) )
323adant2 1007 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( * `  ( A  +  C )
)  x.  B )  =  ( ( ( * `  A )  +  ( * `  C ) )  x.  B ) )
4 simp1 988 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
54cjcld 12677 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
* `  A )  e.  CC )
6 simp3 990 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
76cjcld 12677 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
* `  C )  e.  CC )
8 simp2 989 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
95, 7, 8adddird 9403 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( * `  A )  +  ( * `  C ) )  x.  B )  =  ( ( ( * `  A )  x.  B )  +  ( ( * `  C )  x.  B
) ) )
103, 9eqtrd 2470 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( * `  ( A  +  C )
)  x.  B )  =  ( ( ( * `  A )  x.  B )  +  ( ( * `  C )  x.  B
) ) )
1110fveq2d 5690 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
Im `  ( (
* `  ( A  +  C ) )  x.  B ) )  =  ( Im `  (
( ( * `  A )  x.  B
)  +  ( ( * `  C )  x.  B ) ) ) )
125, 8mulcld 9398 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( * `  A
)  x.  B )  e.  CC )
137, 8mulcld 9398 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( * `  C
)  x.  B )  e.  CC )
1412, 13imaddd 12696 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
Im `  ( (
( * `  A
)  x.  B )  +  ( ( * `
 C )  x.  B ) ) )  =  ( ( Im
`  ( ( * `
 A )  x.  B ) )  +  ( Im `  (
( * `  C
)  x.  B ) ) ) )
1511, 14eqtrd 2470 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
Im `  ( (
* `  ( A  +  C ) )  x.  B ) )  =  ( ( Im `  ( ( * `  A )  x.  B
) )  +  ( Im `  ( ( * `  C )  x.  B ) ) ) )
164, 6addcld 9397 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  C )  e.  CC )
17 sigar . . . 4  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
1817sigarval 29857 . . 3  |-  ( ( ( A  +  C
)  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  C ) G B )  =  ( Im
`  ( ( * `
 ( A  +  C ) )  x.  B ) ) )
1916, 8, 18syl2anc 661 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
) G B )  =  ( Im `  ( ( * `  ( A  +  C
) )  x.  B
) ) )
2017sigarval 29857 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A G B )  =  ( Im
`  ( ( * `
 A )  x.  B ) ) )
21203adant3 1008 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A G B )  =  ( Im `  (
( * `  A
)  x.  B ) ) )
22 3simpc 987 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  e.  CC  /\  C  e.  CC ) )
2322ancomd 451 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C  e.  CC  /\  B  e.  CC ) )
2417sigarval 29857 . . . 4  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C G B )  =  ( Im
`  ( ( * `
 C )  x.  B ) ) )
2523, 24syl 16 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( C G B )  =  ( Im `  (
( * `  C
)  x.  B ) ) )
2621, 25oveq12d 6104 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A G B )  +  ( C G B ) )  =  ( ( Im
`  ( ( * `
 A )  x.  B ) )  +  ( Im `  (
( * `  C
)  x.  B ) ) ) )
2715, 19, 263eqtr4d 2480 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
) G B )  =  ( ( A G B )  +  ( C G B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   CCcc 9272    + caddc 9277    x. cmul 9279   *ccj 12577   Imcim 12579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-2 10372  df-cj 12580  df-re 12581  df-im 12582
This theorem is referenced by:  sigaras  29862  sharhght  29872
  Copyright terms: Public domain W3C validator