Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarac Structured version   Unicode version

Theorem sigarac 31763
Description: Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
Assertion
Ref Expression
sigarac  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A G B )  =  -u ( B G A ) )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    G( x, y)

Proof of Theorem sigarac
StepHypRef Expression
1 sigar . . . 4  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
21sigarval 31761 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A G B )  =  ( Im
`  ( ( * `
 A )  x.  B ) ) )
3 cjcl 12904 . . . . . . 7  |-  ( B  e.  CC  ->  (
* `  B )  e.  CC )
43adantl 466 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  B
)  e.  CC )
5 simpl 457 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
64, 5cjmuld 13020 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  (
( * `  B
)  x.  A ) )  =  ( ( * `  ( * `
 B ) )  x.  ( * `  A ) ) )
7 simpr 461 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
87cjcjd 12998 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  (
* `  B )
)  =  B )
98oveq1d 6300 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  ( * `  B
) )  x.  (
* `  A )
)  =  ( B  x.  ( * `  A ) ) )
105cjcld 12995 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  A
)  e.  CC )
117, 10mulcomd 9618 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  (
* `  A )
)  =  ( ( * `  A )  x.  B ) )
126, 9, 113eqtrrd 2513 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  B
)  =  ( * `
 ( ( * `
 B )  x.  A ) ) )
1312fveq2d 5870 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
( * `  A
)  x.  B ) )  =  ( Im
`  ( * `  ( ( * `  B )  x.  A
) ) ) )
144, 5mulcld 9617 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  B )  x.  A
)  e.  CC )
1514imcjd 13004 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
* `  ( (
* `  B )  x.  A ) ) )  =  -u ( Im `  ( ( * `  B )  x.  A
) ) )
162, 13, 153eqtrd 2512 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A G B )  =  -u (
Im `  ( (
* `  B )  x.  A ) ) )
171sigarval 31761 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B G A )  =  ( Im
`  ( ( * `
 B )  x.  A ) ) )
1817ancoms 453 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B G A )  =  ( Im
`  ( ( * `
 B )  x.  A ) ) )
1918negeqd 9815 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( B G A )  =  -u ( Im `  ( ( * `  B )  x.  A ) ) )
2016, 19eqtr4d 2511 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A G B )  =  -u ( B G A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   ` cfv 5588  (class class class)co 6285    |-> cmpt2 6287   CCcc 9491    x. cmul 9498   -ucneg 9807   *ccj 12895   Imcim 12897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-2 10595  df-cj 12898  df-re 12899  df-im 12900
This theorem is referenced by:  sigaras  31766  sigarms  31767  sigarperm  31771  sigariz  31774  sigarcol  31775  sigaradd  31777  cevathlem2  31779
  Copyright terms: Public domain W3C validator